MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isabvd Structured version   Unicode version

Theorem isabvd 15900
Description: Properties that determine an absolute value. (Contributed by Mario Carneiro, 8-Sep-2014.) (Revised by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
isabvd.a  |-  ( ph  ->  A  =  (AbsVal `  R ) )
isabvd.b  |-  ( ph  ->  B  =  ( Base `  R ) )
isabvd.p  |-  ( ph  ->  .+  =  ( +g  `  R ) )
isabvd.t  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
isabvd.z  |-  ( ph  ->  .0.  =  ( 0g
`  R ) )
isabvd.1  |-  ( ph  ->  R  e.  Ring )
isabvd.2  |-  ( ph  ->  F : B --> RR )
isabvd.3  |-  ( ph  ->  ( F `  .0.  )  =  0 )
isabvd.4  |-  ( (
ph  /\  x  e.  B  /\  x  =/=  .0.  )  ->  0  <  ( F `  x )
)
isabvd.5  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  )  /\  (
y  e.  B  /\  y  =/=  .0.  ) )  ->  ( F `  ( x  .x.  y ) )  =  ( ( F `  x )  x.  ( F `  y ) ) )
isabvd.6  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  )  /\  (
y  e.  B  /\  y  =/=  .0.  ) )  ->  ( F `  ( x  .+  y ) )  <_  ( ( F `  x )  +  ( F `  y ) ) )
Assertion
Ref Expression
isabvd  |-  ( ph  ->  F  e.  A )
Distinct variable groups:    x, y, F    ph, x, y    x, R, y
Allowed substitution hints:    A( x, y)    B( x, y)    .+ ( x, y)    .x. ( x, y)    .0. ( x, y)

Proof of Theorem isabvd
StepHypRef Expression
1 isabvd.2 . . . . . 6  |-  ( ph  ->  F : B --> RR )
2 isabvd.b . . . . . . 7  |-  ( ph  ->  B  =  ( Base `  R ) )
32feq2d 5573 . . . . . 6  |-  ( ph  ->  ( F : B --> RR 
<->  F : ( Base `  R ) --> RR ) )
41, 3mpbid 202 . . . . 5  |-  ( ph  ->  F : ( Base `  R ) --> RR )
5 ffn 5583 . . . . 5  |-  ( F : ( Base `  R
) --> RR  ->  F  Fn  ( Base `  R
) )
64, 5syl 16 . . . 4  |-  ( ph  ->  F  Fn  ( Base `  R ) )
74ffvelrnda 5862 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  ( F `  x )  e.  RR )
8 0le0 10073 . . . . . . . . . 10  |-  0  <_  0
9 isabvd.z . . . . . . . . . . . 12  |-  ( ph  ->  .0.  =  ( 0g
`  R ) )
109fveq2d 5724 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  .0.  )  =  ( F `  ( 0g `  R
) ) )
11 isabvd.3 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  .0.  )  =  0 )
1210, 11eqtr3d 2469 . . . . . . . . . 10  |-  ( ph  ->  ( F `  ( 0g `  R ) )  =  0 )
138, 12syl5breqr 4240 . . . . . . . . 9  |-  ( ph  ->  0  <_  ( F `  ( 0g `  R
) ) )
1413adantr 452 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  0  <_  ( F `  ( 0g
`  R ) ) )
15 fveq2 5720 . . . . . . . . 9  |-  ( x  =  ( 0g `  R )  ->  ( F `  x )  =  ( F `  ( 0g `  R ) ) )
1615breq2d 4216 . . . . . . . 8  |-  ( x  =  ( 0g `  R )  ->  (
0  <_  ( F `  x )  <->  0  <_  ( F `  ( 0g
`  R ) ) ) )
1714, 16syl5ibrcom 214 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  ( x  =  ( 0g `  R )  ->  0  <_  ( F `  x
) ) )
18 simp1 957 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R ) )  ->  ph )
19 simp2 958 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R ) )  ->  x  e.  (
Base `  R )
)
2023ad2ant1 978 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R ) )  ->  B  =  (
Base `  R )
)
2119, 20eleqtrrd 2512 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R ) )  ->  x  e.  B
)
22 simp3 959 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R ) )  ->  x  =/=  ( 0g `  R ) )
2393ad2ant1 978 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R ) )  ->  .0.  =  ( 0g `  R ) )
2422, 23neeqtrrd 2622 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R ) )  ->  x  =/=  .0.  )
25 isabvd.4 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  B  /\  x  =/=  .0.  )  ->  0  <  ( F `  x )
)
2618, 21, 24, 25syl3anc 1184 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R ) )  ->  0  <  ( F `  x )
)
27 0re 9083 . . . . . . . . . 10  |-  0  e.  RR
2873adant3 977 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R ) )  ->  ( F `  x )  e.  RR )
29 ltle 9155 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  ( F `  x )  e.  RR )  -> 
( 0  <  ( F `  x )  ->  0  <_  ( F `  x ) ) )
3027, 28, 29sylancr 645 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R ) )  ->  ( 0  < 
( F `  x
)  ->  0  <_  ( F `  x ) ) )
3126, 30mpd 15 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R ) )  ->  0  <_  ( F `  x )
)
32313expia 1155 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  ( x  =/=  ( 0g `  R
)  ->  0  <_  ( F `  x ) ) )
3317, 32pm2.61dne 2675 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  0  <_  ( F `  x ) )
34 elrege0 10999 . . . . . 6  |-  ( ( F `  x )  e.  ( 0 [,) 
+oo )  <->  ( ( F `  x )  e.  RR  /\  0  <_ 
( F `  x
) ) )
357, 33, 34sylanbrc 646 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  ( F `  x )  e.  ( 0 [,)  +oo )
)
3635ralrimiva 2781 . . . 4  |-  ( ph  ->  A. x  e.  (
Base `  R )
( F `  x
)  e.  ( 0 [,)  +oo ) )
37 ffnfv 5886 . . . 4  |-  ( F : ( Base `  R
) --> ( 0 [,) 
+oo )  <->  ( F  Fn  ( Base `  R
)  /\  A. x  e.  ( Base `  R
) ( F `  x )  e.  ( 0 [,)  +oo )
) )
386, 36, 37sylanbrc 646 . . 3  |-  ( ph  ->  F : ( Base `  R ) --> ( 0 [,)  +oo ) )
3926gt0ne0d 9583 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  x  =/=  ( 0g `  R ) )  ->  ( F `  x )  =/=  0
)
40393expia 1155 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  ( x  =/=  ( 0g `  R
)  ->  ( F `  x )  =/=  0
) )
4140necon4d 2661 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  ( ( F `  x )  =  0  ->  x  =  ( 0g `  R ) ) )
4212adantr 452 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  ( F `  ( 0g `  R
) )  =  0 )
4315eqeq1d 2443 . . . . . . 7  |-  ( x  =  ( 0g `  R )  ->  (
( F `  x
)  =  0  <->  ( F `  ( 0g `  R ) )  =  0 ) )
4442, 43syl5ibrcom 214 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  ( x  =  ( 0g `  R )  ->  ( F `  x )  =  0 ) )
4541, 44impbid 184 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  ( ( F `  x )  =  0  <->  x  =  ( 0g `  R ) ) )
46123ad2ant1 978 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( F `  ( 0g `  R ) )  =  0 )
4746adantr 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( F `  ( 0g `  R
) )  =  0 )
48 oveq1 6080 . . . . . . . . . . . 12  |-  ( x  =  ( 0g `  R )  ->  (
x ( .r `  R ) y )  =  ( ( 0g
`  R ) ( .r `  R ) y ) )
49 isabvd.1 . . . . . . . . . . . . . 14  |-  ( ph  ->  R  e.  Ring )
50493ad2ant1 978 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  R  e.  Ring )
51 simp3 959 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  y  e.  (
Base `  R )
)
52 eqid 2435 . . . . . . . . . . . . . 14  |-  ( Base `  R )  =  (
Base `  R )
53 eqid 2435 . . . . . . . . . . . . . 14  |-  ( .r
`  R )  =  ( .r `  R
)
54 eqid 2435 . . . . . . . . . . . . . 14  |-  ( 0g
`  R )  =  ( 0g `  R
)
5552, 53, 54rnglz 15692 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  y  e.  ( Base `  R
) )  ->  (
( 0g `  R
) ( .r `  R ) y )  =  ( 0g `  R ) )
5650, 51, 55syl2anc 643 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( ( 0g
`  R ) ( .r `  R ) y )  =  ( 0g `  R ) )
5748, 56sylan9eqr 2489 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( x
( .r `  R
) y )  =  ( 0g `  R
) )
5857fveq2d 5724 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( F `  ( x ( .r
`  R ) y ) )  =  ( F `  ( 0g
`  R ) ) )
5915, 46sylan9eqr 2489 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( F `  x )  =  0 )
6059oveq1d 6088 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( ( F `  x )  x.  ( F `  y
) )  =  ( 0  x.  ( F `
 y ) ) )
6143ad2ant1 978 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  F : (
Base `  R ) --> RR )
6261, 51ffvelrnd 5863 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( F `  y )  e.  RR )
6362recnd 9106 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( F `  y )  e.  CC )
6463adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( F `  y )  e.  CC )
6564mul02d 9256 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( 0  x.  ( F `  y ) )  =  0 )
6660, 65eqtrd 2467 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( ( F `  x )  x.  ( F `  y
) )  =  0 )
6747, 58, 663eqtr4d 2477 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( F `  ( x ( .r
`  R ) y ) )  =  ( ( F `  x
)  x.  ( F `
 y ) ) )
6846adantr 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( F `  ( 0g `  R
) )  =  0 )
69 oveq2 6081 . . . . . . . . . . . 12  |-  ( y  =  ( 0g `  R )  ->  (
x ( .r `  R ) y )  =  ( x ( .r `  R ) ( 0g `  R
) ) )
70 simp2 958 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  x  e.  (
Base `  R )
)
7152, 53, 54rngrz 15693 . . . . . . . . . . . . 13  |-  ( ( R  e.  Ring  /\  x  e.  ( Base `  R
) )  ->  (
x ( .r `  R ) ( 0g
`  R ) )  =  ( 0g `  R ) )
7250, 70, 71syl2anc 643 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( x ( .r `  R ) ( 0g `  R
) )  =  ( 0g `  R ) )
7369, 72sylan9eqr 2489 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( x
( .r `  R
) y )  =  ( 0g `  R
) )
7473fveq2d 5724 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( F `  ( x ( .r
`  R ) y ) )  =  ( F `  ( 0g
`  R ) ) )
75 fveq2 5720 . . . . . . . . . . . . 13  |-  ( y  =  ( 0g `  R )  ->  ( F `  y )  =  ( F `  ( 0g `  R ) ) )
7675, 46sylan9eqr 2489 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( F `  y )  =  0 )
7776oveq2d 6089 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( ( F `  x )  x.  ( F `  y
) )  =  ( ( F `  x
)  x.  0 ) )
7861, 70ffvelrnd 5863 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( F `  x )  e.  RR )
7978recnd 9106 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( F `  x )  e.  CC )
8079adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( F `  x )  e.  CC )
8180mul01d 9257 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( ( F `  x )  x.  0 )  =  0 )
8277, 81eqtrd 2467 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( ( F `  x )  x.  ( F `  y
) )  =  0 )
8368, 74, 823eqtr4d 2477 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( F `  ( x ( .r
`  R ) y ) )  =  ( ( F `  x
)  x.  ( F `
 y ) ) )
84 simpl1 960 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  ph )
85 isabvd.t . . . . . . . . . . . . 13  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
8684, 85syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  .x.  =  ( .r `  R ) )
8786oveqd 6090 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  (
x  .x.  y )  =  ( x ( .r `  R ) y ) )
8887fveq2d 5724 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  ( F `  ( x  .x.  y ) )  =  ( F `  (
x ( .r `  R ) y ) ) )
89 simpl2 961 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  x  e.  ( Base `  R
) )
9084, 2syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  B  =  ( Base `  R
) )
9189, 90eleqtrrd 2512 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  x  e.  B )
92 simprl 733 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  x  =/=  ( 0g `  R
) )
9384, 9syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  .0.  =  ( 0g `  R ) )
9492, 93neeqtrrd 2622 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  x  =/=  .0.  )
95 simpl3 962 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  y  e.  ( Base `  R
) )
9695, 90eleqtrrd 2512 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  y  e.  B )
97 simprr 734 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  y  =/=  ( 0g `  R
) )
9897, 93neeqtrrd 2622 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  y  =/=  .0.  )
99 isabvd.5 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  )  /\  (
y  e.  B  /\  y  =/=  .0.  ) )  ->  ( F `  ( x  .x.  y ) )  =  ( ( F `  x )  x.  ( F `  y ) ) )
10084, 91, 94, 96, 98, 99syl122anc 1193 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  ( F `  ( x  .x.  y ) )  =  ( ( F `  x )  x.  ( F `  y )
) )
10188, 100eqtr3d 2469 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  ( F `  ( x
( .r `  R
) y ) )  =  ( ( F `
 x )  x.  ( F `  y
) ) )
10267, 83, 101pm2.61da2ne 2677 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( F `  ( x ( .r
`  R ) y ) )  =  ( ( F `  x
)  x.  ( F `
 y ) ) )
103 oveq1 6080 . . . . . . . . . . . 12  |-  ( x  =  ( 0g `  R )  ->  (
x ( +g  `  R
) y )  =  ( ( 0g `  R ) ( +g  `  R ) y ) )
104 rnggrp 15661 . . . . . . . . . . . . . 14  |-  ( R  e.  Ring  ->  R  e. 
Grp )
10550, 104syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  R  e.  Grp )
106 eqid 2435 . . . . . . . . . . . . . 14  |-  ( +g  `  R )  =  ( +g  `  R )
10752, 106, 54grplid 14827 . . . . . . . . . . . . 13  |-  ( ( R  e.  Grp  /\  y  e.  ( Base `  R ) )  -> 
( ( 0g `  R ) ( +g  `  R ) y )  =  y )
108105, 51, 107syl2anc 643 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( ( 0g
`  R ) ( +g  `  R ) y )  =  y )
109103, 108sylan9eqr 2489 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( x
( +g  `  R ) y )  =  y )
110109fveq2d 5724 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( F `  ( x ( +g  `  R ) y ) )  =  ( F `
 y ) )
1118, 59syl5breqr 4240 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  0  <_  ( F `  x ) )
11262, 78addge02d 9607 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( 0  <_ 
( F `  x
)  <->  ( F `  y )  <_  (
( F `  x
)  +  ( F `
 y ) ) ) )
113112adantr 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( 0  <_  ( F `  x )  <->  ( F `  y )  <_  (
( F `  x
)  +  ( F `
 y ) ) ) )
114111, 113mpbid 202 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( F `  y )  <_  (
( F `  x
)  +  ( F `
 y ) ) )
115110, 114eqbrtrd 4224 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  x  =  ( 0g `  R ) )  ->  ( F `  ( x ( +g  `  R ) y ) )  <_  ( ( F `  x )  +  ( F `  y ) ) )
116 oveq2 6081 . . . . . . . . . . . 12  |-  ( y  =  ( 0g `  R )  ->  (
x ( +g  `  R
) y )  =  ( x ( +g  `  R ) ( 0g
`  R ) ) )
11752, 106, 54grprid 14828 . . . . . . . . . . . . 13  |-  ( ( R  e.  Grp  /\  x  e.  ( Base `  R ) )  -> 
( x ( +g  `  R ) ( 0g
`  R ) )  =  x )
118105, 70, 117syl2anc 643 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( x ( +g  `  R ) ( 0g `  R
) )  =  x )
119116, 118sylan9eqr 2489 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( x
( +g  `  R ) y )  =  x )
120119fveq2d 5724 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( F `  ( x ( +g  `  R ) y ) )  =  ( F `
 x ) )
1218, 76syl5breqr 4240 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  0  <_  ( F `  y ) )
12278, 62addge01d 9606 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( 0  <_ 
( F `  y
)  <->  ( F `  x )  <_  (
( F `  x
)  +  ( F `
 y ) ) ) )
123122adantr 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( 0  <_  ( F `  y )  <->  ( F `  x )  <_  (
( F `  x
)  +  ( F `
 y ) ) ) )
124121, 123mpbid 202 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( F `  x )  <_  (
( F `  x
)  +  ( F `
 y ) ) )
125120, 124eqbrtrd 4224 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  y  =  ( 0g `  R ) )  ->  ( F `  ( x ( +g  `  R ) y ) )  <_  ( ( F `  x )  +  ( F `  y ) ) )
126 isabvd.p . . . . . . . . . . . . 13  |-  ( ph  ->  .+  =  ( +g  `  R ) )
12784, 126syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  .+  =  ( +g  `  R ) )
128127oveqd 6090 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  (
x  .+  y )  =  ( x ( +g  `  R ) y ) )
129128fveq2d 5724 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  ( F `  ( x  .+  y ) )  =  ( F `  (
x ( +g  `  R
) y ) ) )
130 isabvd.6 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  )  /\  (
y  e.  B  /\  y  =/=  .0.  ) )  ->  ( F `  ( x  .+  y ) )  <_  ( ( F `  x )  +  ( F `  y ) ) )
13184, 91, 94, 96, 98, 130syl122anc 1193 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  ( F `  ( x  .+  y ) )  <_ 
( ( F `  x )  +  ( F `  y ) ) )
132129, 131eqbrtrrd 4226 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  /\  ( x  =/=  ( 0g `  R
)  /\  y  =/=  ( 0g `  R ) ) )  ->  ( F `  ( x
( +g  `  R ) y ) )  <_ 
( ( F `  x )  +  ( F `  y ) ) )
133115, 125, 132pm2.61da2ne 2677 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( F `  ( x ( +g  `  R ) y ) )  <_  ( ( F `  x )  +  ( F `  y ) ) )
134102, 133jca 519 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) )  ->  ( ( F `
 ( x ( .r `  R ) y ) )  =  ( ( F `  x )  x.  ( F `  y )
)  /\  ( F `  ( x ( +g  `  R ) y ) )  <_  ( ( F `  x )  +  ( F `  y ) ) ) )
1351343expia 1155 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  ( y  e.  ( Base `  R
)  ->  ( ( F `  ( x
( .r `  R
) y ) )  =  ( ( F `
 x )  x.  ( F `  y
) )  /\  ( F `  ( x
( +g  `  R ) y ) )  <_ 
( ( F `  x )  +  ( F `  y ) ) ) ) )
136135ralrimiv 2780 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  A. y  e.  ( Base `  R
) ( ( F `
 ( x ( .r `  R ) y ) )  =  ( ( F `  x )  x.  ( F `  y )
)  /\  ( F `  ( x ( +g  `  R ) y ) )  <_  ( ( F `  x )  +  ( F `  y ) ) ) )
13745, 136jca 519 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  R )
)  ->  ( (
( F `  x
)  =  0  <->  x  =  ( 0g `  R ) )  /\  A. y  e.  ( Base `  R ) ( ( F `  ( x ( .r `  R
) y ) )  =  ( ( F `
 x )  x.  ( F `  y
) )  /\  ( F `  ( x
( +g  `  R ) y ) )  <_ 
( ( F `  x )  +  ( F `  y ) ) ) ) )
138137ralrimiva 2781 . . 3  |-  ( ph  ->  A. x  e.  (
Base `  R )
( ( ( F `
 x )  =  0  <->  x  =  ( 0g `  R ) )  /\  A. y  e.  ( Base `  R
) ( ( F `
 ( x ( .r `  R ) y ) )  =  ( ( F `  x )  x.  ( F `  y )
)  /\  ( F `  ( x ( +g  `  R ) y ) )  <_  ( ( F `  x )  +  ( F `  y ) ) ) ) )
139 eqid 2435 . . . . 5  |-  (AbsVal `  R )  =  (AbsVal `  R )
140139, 52, 106, 53, 54isabv 15899 . . . 4  |-  ( R  e.  Ring  ->  ( F  e.  (AbsVal `  R
)  <->  ( F :
( Base `  R ) --> ( 0 [,)  +oo )  /\  A. x  e.  ( Base `  R
) ( ( ( F `  x )  =  0  <->  x  =  ( 0g `  R ) )  /\  A. y  e.  ( Base `  R
) ( ( F `
 ( x ( .r `  R ) y ) )  =  ( ( F `  x )  x.  ( F `  y )
)  /\  ( F `  ( x ( +g  `  R ) y ) )  <_  ( ( F `  x )  +  ( F `  y ) ) ) ) ) ) )
14149, 140syl 16 . . 3  |-  ( ph  ->  ( F  e.  (AbsVal `  R )  <->  ( F : ( Base `  R
) --> ( 0 [,) 
+oo )  /\  A. x  e.  ( Base `  R ) ( ( ( F `  x
)  =  0  <->  x  =  ( 0g `  R ) )  /\  A. y  e.  ( Base `  R ) ( ( F `  ( x ( .r `  R
) y ) )  =  ( ( F `
 x )  x.  ( F `  y
) )  /\  ( F `  ( x
( +g  `  R ) y ) )  <_ 
( ( F `  x )  +  ( F `  y ) ) ) ) ) ) )
14238, 138, 141mpbir2and 889 . 2  |-  ( ph  ->  F  e.  (AbsVal `  R ) )
143 isabvd.a . 2  |-  ( ph  ->  A  =  (AbsVal `  R ) )
144142, 143eleqtrrd 2512 1  |-  ( ph  ->  F  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   class class class wbr 4204    Fn wfn 5441   -->wf 5442   ` cfv 5446  (class class class)co 6073   CCcc 8980   RRcr 8981   0cc0 8982    + caddc 8985    x. cmul 8987    +oocpnf 9109    < clt 9112    <_ cle 9113   [,)cico 10910   Basecbs 13461   +g cplusg 13521   .rcmulr 13522   0gc0g 13715   Grpcgrp 14677   Ringcrg 15652  AbsValcabv 15896
This theorem is referenced by:  abvres  15919  abvtrivd  15920  absabv  16748  abvcxp  21301  padicabv  21316
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-ico 10914  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-plusg 13534  df-0g 13719  df-mnd 14682  df-grp 14804  df-minusg 14805  df-mgp 15641  df-rng 15655  df-abv 15897
  Copyright terms: Public domain W3C validator