MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs Unicode version

Theorem isacs 13553
Description: A set is an algebraic closure system iff it is specified by some function of the finite subsets, such that a set is closed iff it does not expand under the operation. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
isacs  |-  ( C  e.  (ACS `  X
)  <->  ( C  e.  (Moore `  X )  /\  E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  C  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) ) )
Distinct variable groups:    C, f,
s    f, X, s

Proof of Theorem isacs
Dummy variables  c  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 5555 . 2  |-  ( C  e.  (ACS `  X
)  ->  X  e.  _V )
2 elfvex 5555 . . 3  |-  ( C  e.  (Moore `  X
)  ->  X  e.  _V )
32adantr 451 . 2  |-  ( ( C  e.  (Moore `  X )  /\  E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  C  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) )  ->  X  e.  _V )
4 fveq2 5525 . . . . . 6  |-  ( x  =  X  ->  (Moore `  x )  =  (Moore `  X ) )
5 pweq 3628 . . . . . . . . 9  |-  ( x  =  X  ->  ~P x  =  ~P X
)
65, 5feq23d 5386 . . . . . . . 8  |-  ( x  =  X  ->  (
f : ~P x --> ~P x  <->  f : ~P X
--> ~P X ) )
75raleqdv 2742 . . . . . . . 8  |-  ( x  =  X  ->  ( A. s  e.  ~P  x ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s )  <->  A. s  e.  ~P  X ( s  e.  c  <->  U. (
f " ( ~P s  i^i  Fin )
)  C_  s )
) )
86, 7anbi12d 691 . . . . . . 7  |-  ( x  =  X  ->  (
( f : ~P x
--> ~P x  /\  A. s  e.  ~P  x
( s  e.  c  <->  U. ( f " ( ~P s  i^i  Fin )
)  C_  s )
)  <->  ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) ) )
98exbidv 1612 . . . . . 6  |-  ( x  =  X  ->  ( E. f ( f : ~P x --> ~P x  /\  A. s  e.  ~P  x ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) )  <->  E. f
( f : ~P X
--> ~P X  /\  A. s  e.  ~P  X
( s  e.  c  <->  U. ( f " ( ~P s  i^i  Fin )
)  C_  s )
) ) )
104, 9rabeqbidv 2783 . . . . 5  |-  ( x  =  X  ->  { c  e.  (Moore `  x
)  |  E. f
( f : ~P x
--> ~P x  /\  A. s  e.  ~P  x
( s  e.  c  <->  U. ( f " ( ~P s  i^i  Fin )
)  C_  s )
) }  =  {
c  e.  (Moore `  X )  |  E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) } )
11 df-acs 13491 . . . . 5  |- ACS  =  ( x  e.  _V  |->  { c  e.  (Moore `  x )  |  E. f ( f : ~P x --> ~P x  /\  A. s  e.  ~P  x ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) } )
12 fvex 5539 . . . . . 6  |-  (Moore `  X )  e.  _V
1312rabex 4165 . . . . 5  |-  { c  e.  (Moore `  X
)  |  E. f
( f : ~P X
--> ~P X  /\  A. s  e.  ~P  X
( s  e.  c  <->  U. ( f " ( ~P s  i^i  Fin )
)  C_  s )
) }  e.  _V
1410, 11, 13fvmpt 5602 . . . 4  |-  ( X  e.  _V  ->  (ACS `  X )  =  {
c  e.  (Moore `  X )  |  E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) } )
1514eleq2d 2350 . . 3  |-  ( X  e.  _V  ->  ( C  e.  (ACS `  X
)  <->  C  e.  { c  e.  (Moore `  X
)  |  E. f
( f : ~P X
--> ~P X  /\  A. s  e.  ~P  X
( s  e.  c  <->  U. ( f " ( ~P s  i^i  Fin )
)  C_  s )
) } ) )
16 eleq2 2344 . . . . . . . 8  |-  ( c  =  C  ->  (
s  e.  c  <->  s  e.  C ) )
1716bibi1d 310 . . . . . . 7  |-  ( c  =  C  ->  (
( s  e.  c  <->  U. ( f " ( ~P s  i^i  Fin )
)  C_  s )  <->  ( s  e.  C  <->  U. (
f " ( ~P s  i^i  Fin )
)  C_  s )
) )
1817ralbidv 2563 . . . . . 6  |-  ( c  =  C  ->  ( A. s  e.  ~P  X ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s )  <->  A. s  e.  ~P  X ( s  e.  C  <->  U. (
f " ( ~P s  i^i  Fin )
)  C_  s )
) )
1918anbi2d 684 . . . . 5  |-  ( c  =  C  ->  (
( f : ~P X
--> ~P X  /\  A. s  e.  ~P  X
( s  e.  c  <->  U. ( f " ( ~P s  i^i  Fin )
)  C_  s )
)  <->  ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  C  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) ) )
2019exbidv 1612 . . . 4  |-  ( c  =  C  ->  ( E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) )  <->  E. f
( f : ~P X
--> ~P X  /\  A. s  e.  ~P  X
( s  e.  C  <->  U. ( f " ( ~P s  i^i  Fin )
)  C_  s )
) ) )
2120elrab 2923 . . 3  |-  ( C  e.  { c  e.  (Moore `  X )  |  E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  c  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) }  <-> 
( C  e.  (Moore `  X )  /\  E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  C  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) ) )
2215, 21syl6bb 252 . 2  |-  ( X  e.  _V  ->  ( C  e.  (ACS `  X
)  <->  ( C  e.  (Moore `  X )  /\  E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  C  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) ) ) )
231, 3, 22pm5.21nii 342 1  |-  ( C  e.  (ACS `  X
)  <->  ( C  e.  (Moore `  X )  /\  E. f ( f : ~P X --> ~P X  /\  A. s  e.  ~P  X ( s  e.  C  <->  U. ( f "
( ~P s  i^i 
Fin ) )  C_  s ) ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   A.wral 2543   {crab 2547   _Vcvv 2788    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   U.cuni 3827   "cima 4692   -->wf 5251   ` cfv 5255   Fincfn 6863  Moorecmre 13484  ACScacs 13487
This theorem is referenced by:  acsmre  13554  isacs2  13555  isacs1i  13559  mreacs  13560
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-acs 13491
  Copyright terms: Public domain W3C validator