MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs3lem Unicode version

Theorem isacs3lem 14269
Description: An algebraic closure system satisfies isacs3 14277. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
isacs3lem  |-  ( C  e.  (ACS `  X
)  ->  ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C ( (toInc `  s )  e. Dirset  ->  U. s  e.  C ) ) )
Distinct variable groups:    C, s    X, s

Proof of Theorem isacs3lem
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acsmre 13554 . 2  |-  ( C  e.  (ACS `  X
)  ->  C  e.  (Moore `  X ) )
2 mresspw 13494 . . . . . . . . . . 11  |-  ( C  e.  (Moore `  X
)  ->  C  C_  ~P X )
31, 2syl 15 . . . . . . . . . 10  |-  ( C  e.  (ACS `  X
)  ->  C  C_  ~P X )
4 sspwb 4223 . . . . . . . . . 10  |-  ( C 
C_  ~P X  <->  ~P C  C_ 
~P ~P X )
53, 4sylib 188 . . . . . . . . 9  |-  ( C  e.  (ACS `  X
)  ->  ~P C  C_ 
~P ~P X )
65sselda 3180 . . . . . . . 8  |-  ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  -> 
s  e.  ~P ~P X )
7 elpwi 3633 . . . . . . . 8  |-  ( s  e.  ~P ~P X  ->  s  C_  ~P X
)
86, 7syl 15 . . . . . . 7  |-  ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  -> 
s  C_  ~P X
)
9 sspwuni 3987 . . . . . . 7  |-  ( s 
C_  ~P X  <->  U. s  C_  X )
108, 9sylib 188 . . . . . 6  |-  ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  ->  U. s  C_  X )
1110adantr 451 . . . . 5  |-  ( ( ( C  e.  (ACS
`  X )  /\  s  e.  ~P C
)  /\  (toInc `  s
)  e. Dirset )  ->  U. s  C_  X )
12 inss1 3389 . . . . . . . . . . . 12  |-  ( ~P
U. s  i^i  Fin )  C_  ~P U. s
1312sseli 3176 . . . . . . . . . . 11  |-  ( x  e.  ( ~P U. s  i^i  Fin )  ->  x  e.  ~P U. s
)
14 elpwi 3633 . . . . . . . . . . 11  |-  ( x  e.  ~P U. s  ->  x  C_  U. s
)
1513, 14syl 15 . . . . . . . . . 10  |-  ( x  e.  ( ~P U. s  i^i  Fin )  ->  x  C_  U. s )
16 inss2 3390 . . . . . . . . . . 11  |-  ( ~P
U. s  i^i  Fin )  C_  Fin
1716sseli 3176 . . . . . . . . . 10  |-  ( x  e.  ( ~P U. s  i^i  Fin )  ->  x  e.  Fin )
18 fissuni 7160 . . . . . . . . . 10  |-  ( ( x  C_  U. s  /\  x  e.  Fin )  ->  E. y  e.  ( ~P s  i^i  Fin ) x  C_  U. y
)
1915, 17, 18syl2anc 642 . . . . . . . . 9  |-  ( x  e.  ( ~P U. s  i^i  Fin )  ->  E. y  e.  ( ~P s  i^i  Fin )
x  C_  U. y
)
2019ad2antll 709 . . . . . . . 8  |-  ( ( ( C  e.  (ACS
`  X )  /\  s  e.  ~P C
)  /\  ( (toInc `  s )  e. Dirset  /\  x  e.  ( ~P U. s  i^i  Fin ) ) )  ->  E. y  e.  ( ~P s  i^i  Fin ) x  C_  U. y
)
211ad3antrrr 710 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  x  e.  ( ~P U. s  i^i 
Fin ) ) )  /\  ( y  e.  ( ~P s  i^i 
Fin )  /\  x  C_ 
U. y ) )  ->  C  e.  (Moore `  X ) )
22 simprr 733 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  x  e.  ( ~P U. s  i^i 
Fin ) ) )  /\  ( y  e.  ( ~P s  i^i 
Fin )  /\  x  C_ 
U. y ) )  ->  x  C_  U. y
)
23 inss1 3389 . . . . . . . . . . . . . . . . 17  |-  ( ~P s  i^i  Fin )  C_ 
~P s
2423sseli 3176 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( ~P s  i^i  Fin )  ->  y  e.  ~P s )
25 elpwi 3633 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ~P s  -> 
y  C_  s )
2624, 25syl 15 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( ~P s  i^i  Fin )  ->  y  C_  s )
27 uniss 3848 . . . . . . . . . . . . . . 15  |-  ( y 
C_  s  ->  U. y  C_ 
U. s )
2826, 27syl 15 . . . . . . . . . . . . . 14  |-  ( y  e.  ( ~P s  i^i  Fin )  ->  U. y  C_ 
U. s )
2928ad2antrl 708 . . . . . . . . . . . . 13  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  x  e.  ( ~P U. s  i^i 
Fin ) ) )  /\  ( y  e.  ( ~P s  i^i 
Fin )  /\  x  C_ 
U. y ) )  ->  U. y  C_  U. s
)
3010ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  x  e.  ( ~P U. s  i^i 
Fin ) ) )  /\  ( y  e.  ( ~P s  i^i 
Fin )  /\  x  C_ 
U. y ) )  ->  U. s  C_  X
)
3129, 30sstrd 3189 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  x  e.  ( ~P U. s  i^i 
Fin ) ) )  /\  ( y  e.  ( ~P s  i^i 
Fin )  /\  x  C_ 
U. y ) )  ->  U. y  C_  X
)
32 eqid 2283 . . . . . . . . . . . . 13  |-  (mrCls `  C )  =  (mrCls `  C )
3332mrcss 13518 . . . . . . . . . . . 12  |-  ( ( C  e.  (Moore `  X )  /\  x  C_ 
U. y  /\  U. y  C_  X )  -> 
( (mrCls `  C
) `  x )  C_  ( (mrCls `  C
) `  U. y ) )
3421, 22, 31, 33syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  x  e.  ( ~P U. s  i^i 
Fin ) ) )  /\  ( y  e.  ( ~P s  i^i 
Fin )  /\  x  C_ 
U. y ) )  ->  ( (mrCls `  C ) `  x
)  C_  ( (mrCls `  C ) `  U. y ) )
35 simpl 443 . . . . . . . . . . . . . . . . 17  |-  ( ( (toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i  Fin ) )  ->  (toInc `  s )  e. Dirset )
3626adantl 452 . . . . . . . . . . . . . . . . 17  |-  ( ( (toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i  Fin ) )  ->  y  C_  s )
37 inss2 3390 . . . . . . . . . . . . . . . . . . 19  |-  ( ~P s  i^i  Fin )  C_ 
Fin
3837sseli 3176 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( ~P s  i^i  Fin )  ->  y  e.  Fin )
3938adantl 452 . . . . . . . . . . . . . . . . 17  |-  ( ( (toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i  Fin ) )  ->  y  e.  Fin )
40 ipodrsfi 14266 . . . . . . . . . . . . . . . . 17  |-  ( ( (toInc `  s )  e. Dirset  /\  y  C_  s  /\  y  e.  Fin )  ->  E. x  e.  s 
U. y  C_  x
)
4135, 36, 39, 40syl3anc 1182 . . . . . . . . . . . . . . . 16  |-  ( ( (toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i  Fin ) )  ->  E. x  e.  s  U. y  C_  x )
4241adantl 452 . . . . . . . . . . . . . . 15  |-  ( ( ( C  e.  (ACS
`  X )  /\  s  e.  ~P C
)  /\  ( (toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i 
Fin ) ) )  ->  E. x  e.  s 
U. y  C_  x
)
431ad3antrrr 710 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i  Fin ) ) )  /\  ( x  e.  s  /\  U. y  C_  x
) )  ->  C  e.  (Moore `  X )
)
44 simprr 733 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i  Fin ) ) )  /\  ( x  e.  s  /\  U. y  C_  x
) )  ->  U. y  C_  x )
45 elpwi 3633 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( s  e.  ~P C  -> 
s  C_  C )
4645adantl 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  -> 
s  C_  C )
4746ad2antrr 706 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i  Fin ) ) )  /\  ( x  e.  s  /\  U. y  C_  x
) )  ->  s  C_  C )
48 simprl 732 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i  Fin ) ) )  /\  ( x  e.  s  /\  U. y  C_  x
) )  ->  x  e.  s )
4947, 48sseldd 3181 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i  Fin ) ) )  /\  ( x  e.  s  /\  U. y  C_  x
) )  ->  x  e.  C )
5032mrcsscl 13522 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  e.  (Moore `  X )  /\  U. y  C_  x  /\  x  e.  C )  ->  (
(mrCls `  C ) `  U. y )  C_  x )
5143, 44, 49, 50syl3anc 1182 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i  Fin ) ) )  /\  ( x  e.  s  /\  U. y  C_  x
) )  ->  (
(mrCls `  C ) `  U. y )  C_  x )
52 elssuni 3855 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  s  ->  x  C_ 
U. s )
5352ad2antrl 708 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i  Fin ) ) )  /\  ( x  e.  s  /\  U. y  C_  x
) )  ->  x  C_ 
U. s )
5451, 53sstrd 3189 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i  Fin ) ) )  /\  ( x  e.  s  /\  U. y  C_  x
) )  ->  (
(mrCls `  C ) `  U. y )  C_  U. s )
5554exp32 588 . . . . . . . . . . . . . . . 16  |-  ( ( ( C  e.  (ACS
`  X )  /\  s  e.  ~P C
)  /\  ( (toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i 
Fin ) ) )  ->  ( x  e.  s  ->  ( U. y  C_  x  ->  (
(mrCls `  C ) `  U. y )  C_  U. s ) ) )
5655rexlimdv 2666 . . . . . . . . . . . . . . 15  |-  ( ( ( C  e.  (ACS
`  X )  /\  s  e.  ~P C
)  /\  ( (toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i 
Fin ) ) )  ->  ( E. x  e.  s  U. y  C_  x  ->  ( (mrCls `  C ) `  U. y )  C_  U. s
) )
5742, 56mpd 14 . . . . . . . . . . . . . 14  |-  ( ( ( C  e.  (ACS
`  X )  /\  s  e.  ~P C
)  /\  ( (toInc `  s )  e. Dirset  /\  y  e.  ( ~P s  i^i 
Fin ) ) )  ->  ( (mrCls `  C ) `  U. y )  C_  U. s
)
5857anassrs 629 . . . . . . . . . . . . 13  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (toInc `  s )  e. Dirset )  /\  y  e.  ( ~P s  i^i  Fin )
)  ->  ( (mrCls `  C ) `  U. y )  C_  U. s
)
5958adantrr 697 . . . . . . . . . . . 12  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (toInc `  s )  e. Dirset )  /\  ( y  e.  ( ~P s  i^i  Fin )  /\  x  C_  U. y
) )  ->  (
(mrCls `  C ) `  U. y )  C_  U. s )
6059adantlrr 701 . . . . . . . . . . 11  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  x  e.  ( ~P U. s  i^i 
Fin ) ) )  /\  ( y  e.  ( ~P s  i^i 
Fin )  /\  x  C_ 
U. y ) )  ->  ( (mrCls `  C ) `  U. y )  C_  U. s
)
6134, 60sstrd 3189 . . . . . . . . . 10  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (
(toInc `  s )  e. Dirset  /\  x  e.  ( ~P U. s  i^i 
Fin ) ) )  /\  ( y  e.  ( ~P s  i^i 
Fin )  /\  x  C_ 
U. y ) )  ->  ( (mrCls `  C ) `  x
)  C_  U. s
)
6261exp32 588 . . . . . . . . 9  |-  ( ( ( C  e.  (ACS
`  X )  /\  s  e.  ~P C
)  /\  ( (toInc `  s )  e. Dirset  /\  x  e.  ( ~P U. s  i^i  Fin ) ) )  ->  ( y  e.  ( ~P s  i^i 
Fin )  ->  (
x  C_  U. y  ->  ( (mrCls `  C
) `  x )  C_ 
U. s ) ) )
6362rexlimdv 2666 . . . . . . . 8  |-  ( ( ( C  e.  (ACS
`  X )  /\  s  e.  ~P C
)  /\  ( (toInc `  s )  e. Dirset  /\  x  e.  ( ~P U. s  i^i  Fin ) ) )  ->  ( E. y  e.  ( ~P s  i^i 
Fin ) x  C_  U. y  ->  ( (mrCls `  C ) `  x
)  C_  U. s
) )
6420, 63mpd 14 . . . . . . 7  |-  ( ( ( C  e.  (ACS
`  X )  /\  s  e.  ~P C
)  /\  ( (toInc `  s )  e. Dirset  /\  x  e.  ( ~P U. s  i^i  Fin ) ) )  ->  ( (mrCls `  C ) `  x
)  C_  U. s
)
6564anassrs 629 . . . . . 6  |-  ( ( ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  /\  (toInc `  s )  e. Dirset )  /\  x  e.  ( ~P U. s  i^i  Fin ) )  ->  (
(mrCls `  C ) `  x )  C_  U. s
)
6665ralrimiva 2626 . . . . 5  |-  ( ( ( C  e.  (ACS
`  X )  /\  s  e.  ~P C
)  /\  (toInc `  s
)  e. Dirset )  ->  A. x  e.  ( ~P
U. s  i^i  Fin ) ( (mrCls `  C ) `  x
)  C_  U. s
)
6732acsfiel 13556 . . . . . 6  |-  ( C  e.  (ACS `  X
)  ->  ( U. s  e.  C  <->  ( U. s  C_  X  /\  A. x  e.  ( ~P U. s  i^i  Fin )
( (mrCls `  C
) `  x )  C_ 
U. s ) ) )
6867ad2antrr 706 . . . . 5  |-  ( ( ( C  e.  (ACS
`  X )  /\  s  e.  ~P C
)  /\  (toInc `  s
)  e. Dirset )  ->  ( U. s  e.  C  <->  ( U. s  C_  X  /\  A. x  e.  ( ~P U. s  i^i 
Fin ) ( (mrCls `  C ) `  x
)  C_  U. s
) ) )
6911, 66, 68mpbir2and 888 . . . 4  |-  ( ( ( C  e.  (ACS
`  X )  /\  s  e.  ~P C
)  /\  (toInc `  s
)  e. Dirset )  ->  U. s  e.  C )
7069ex 423 . . 3  |-  ( ( C  e.  (ACS `  X )  /\  s  e.  ~P C )  -> 
( (toInc `  s
)  e. Dirset  ->  U. s  e.  C ) )
7170ralrimiva 2626 . 2  |-  ( C  e.  (ACS `  X
)  ->  A. s  e.  ~P  C ( (toInc `  s )  e. Dirset  ->  U. s  e.  C ) )
721, 71jca 518 1  |-  ( C  e.  (ACS `  X
)  ->  ( C  e.  (Moore `  X )  /\  A. s  e.  ~P  C ( (toInc `  s )  e. Dirset  ->  U. s  e.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1684   A.wral 2543   E.wrex 2544    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   U.cuni 3827   ` cfv 5255   Fincfn 6863  Moorecmre 13484  mrClscmrc 13485  ACScacs 13487  Dirsetcdrs 14061  toInccipo 14254
This theorem is referenced by:  acsdrsel  14270  acsdrscl  14273  acsficl  14274  isacs5  14275  isacs4  14276  isacs3  14277
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-tset 13227  df-ple 13228  df-ocomp 13229  df-mre 13488  df-mrc 13489  df-acs 13491  df-preset 14062  df-drs 14063  df-poset 14080  df-ipo 14255
  Copyright terms: Public domain W3C validator