MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isarep1 Unicode version

Theorem isarep1 5347
Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. The object PrimReplace is apparently the image of the function encoded by  ph ( x ,  y ) i.e. the class  ( { <. x ,  y >.  |  ph } " A ). If so, we can prove Isabelle's "Axiom of Replacement" conclusion without using the Axiom of Replacement, for which I (N. Megill) currently have no explanation. (Contributed by NM, 26-Oct-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
Assertion
Ref Expression
isarep1  |-  ( b  e.  ( { <. x ,  y >.  |  ph } " A )  <->  E. x  e.  A  [ b  /  y ] ph )
Distinct variable groups:    x, A    x, b, y
Allowed substitution hints:    ph( x, y, b)    A( y, b)

Proof of Theorem isarep1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 vex 2804 . . 3  |-  b  e. 
_V
21elima 5033 . 2  |-  ( b  e.  ( { <. x ,  y >.  |  ph } " A )  <->  E. z  e.  A  z { <. x ,  y >.  |  ph } b )
3 df-br 4040 . . . 4  |-  ( z { <. x ,  y
>.  |  ph } b  <->  <. z ,  b >.  e.  { <. x ,  y
>.  |  ph } )
4 opelopabsb 4291 . . . 4  |-  ( <.
z ,  b >.  e.  { <. x ,  y
>.  |  ph }  <->  [. z  /  x ]. [. b  / 
y ]. ph )
5 sbsbc 3008 . . . . . 6  |-  ( [ b  /  y ]
ph 
<-> 
[. b  /  y ]. ph )
65sbbii 1643 . . . . 5  |-  ( [ z  /  x ] [ b  /  y ] ph  <->  [ z  /  x ] [. b  /  y ]. ph )
7 sbsbc 3008 . . . . 5  |-  ( [ z  /  x ] [. b  /  y ]. ph  <->  [. z  /  x ]. [. b  /  y ]. ph )
86, 7bitr2i 241 . . . 4  |-  ( [. z  /  x ]. [. b  /  y ]. ph  <->  [ z  /  x ] [ b  /  y ] ph )
93, 4, 83bitri 262 . . 3  |-  ( z { <. x ,  y
>.  |  ph } b  <->  [ z  /  x ] [ b  /  y ] ph )
109rexbii 2581 . 2  |-  ( E. z  e.  A  z { <. x ,  y
>.  |  ph } b  <->  E. z  e.  A  [ z  /  x ] [ b  /  y ] ph )
11 nfs1v 2058 . . 3  |-  F/ x [ z  /  x ] [ b  /  y ] ph
12 nfv 1609 . . 3  |-  F/ z [ b  /  y ] ph
13 sbequ12r 1873 . . 3  |-  ( z  =  x  ->  ( [ z  /  x ] [ b  /  y ] ph  <->  [ b  /  y ] ph ) )
1411, 12, 13cbvrex 2774 . 2  |-  ( E. z  e.  A  [
z  /  x ] [ b  /  y ] ph  <->  E. x  e.  A  [ b  /  y ] ph )
152, 10, 143bitri 262 1  |-  ( b  e.  ( { <. x ,  y >.  |  ph } " A )  <->  E. x  e.  A  [ b  /  y ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 176   [wsb 1638    e. wcel 1696   E.wrex 2557   [.wsbc 3004   <.cop 3656   class class class wbr 4039   {copab 4092   "cima 4708
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-xp 4711  df-cnv 4713  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718
  Copyright terms: Public domain W3C validator