Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isblo Structured version   Unicode version

Theorem isblo 22275
 Description: The predicate "is a bounded linear operator." (Contributed by NM, 6-Nov-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
bloval.3
bloval.4
bloval.5
Assertion
Ref Expression
isblo

Proof of Theorem isblo
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 bloval.3 . . . 4
2 bloval.4 . . . 4
3 bloval.5 . . . 4
41, 2, 3bloval 22274 . . 3
54eleq2d 2502 . 2
6 fveq2 5720 . . . 4
76breq1d 4214 . . 3
87elrab 3084 . 2
95, 8syl6bb 253 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   wceq 1652   wcel 1725  crab 2701   class class class wbr 4204  cfv 5446  (class class class)co 6073   cpnf 9109   clt 9112  cnv 22055   clno 22233  cnmoo 22234   cblo 22235 This theorem is referenced by:  isblo2  22276  bloln  22277  nmblore  22279  isblo3i  22294  htthlem  22412 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-iota 5410  df-fun 5448  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-blo 22239
 Copyright terms: Public domain W3C validator