MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isblo2 Unicode version

Theorem isblo2 22237
Description: The predicate "is a bounded linear operator." (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
bloval.3  |-  N  =  ( U normOp OLD W
)
bloval.4  |-  L  =  ( U  LnOp  W
)
bloval.5  |-  B  =  ( U  BLnOp  W )
Assertion
Ref Expression
isblo2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( T  e.  B  <->  ( T  e.  L  /\  ( N `  T )  e.  RR ) ) )

Proof of Theorem isblo2
StepHypRef Expression
1 bloval.3 . . 3  |-  N  =  ( U normOp OLD W
)
2 bloval.4 . . 3  |-  L  =  ( U  LnOp  W
)
3 bloval.5 . . 3  |-  B  =  ( U  BLnOp  W )
41, 2, 3isblo 22236 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( T  e.  B  <->  ( T  e.  L  /\  ( N `  T )  <  +oo ) ) )
5 eqid 2404 . . . . . 6  |-  ( BaseSet `  U )  =  (
BaseSet `  U )
6 eqid 2404 . . . . . 6  |-  ( BaseSet `  W )  =  (
BaseSet `  W )
75, 6, 2lnof 22209 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  T : ( BaseSet `  U
) --> ( BaseSet `  W
) )
85, 6, 1nmoreltpnf 22223 . . . . 5  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T :
( BaseSet `  U ) --> ( BaseSet `  W )
)  ->  ( ( N `  T )  e.  RR  <->  ( N `  T )  <  +oo ) )
97, 8syld3an3 1229 . . . 4  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  T  e.  L )  ->  (
( N `  T
)  e.  RR  <->  ( N `  T )  <  +oo ) )
1093expa 1153 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  /\  T  e.  L )  ->  ( ( N `  T )  e.  RR  <->  ( N `  T )  <  +oo ) )
1110pm5.32da 623 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  (
( T  e.  L  /\  ( N `  T
)  e.  RR )  <-> 
( T  e.  L  /\  ( N `  T
)  <  +oo ) ) )
124, 11bitr4d 248 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( T  e.  B  <->  ( T  e.  L  /\  ( N `  T )  e.  RR ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   class class class wbr 4172   -->wf 5409   ` cfv 5413  (class class class)co 6040   RRcr 8945    +oocpnf 9073    < clt 9076   NrmCVeccnv 22016   BaseSetcba 22018    LnOp clno 22194   normOp OLDcnmoo 22195    BLnOp cblo 22196
This theorem is referenced by:  0blo  22246
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-seq 11279  df-exp 11338  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-grpo 21732  df-gid 21733  df-ginv 21734  df-ablo 21823  df-vc 21978  df-nv 22024  df-va 22027  df-ba 22028  df-sm 22029  df-0v 22030  df-nmcv 22032  df-lno 22198  df-nmoo 22199  df-blo 22200
  Copyright terms: Public domain W3C validator