MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isbn Unicode version

Theorem isbn 18760
Description: A Banach space is a normed vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
isbn.1  |-  F  =  (Scalar `  W )
Assertion
Ref Expression
isbn  |-  ( W  e. Ban 
<->  ( W  e. NrmVec  /\  W  e. CMetSp  /\  F  e. CMetSp )
)

Proof of Theorem isbn
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elin 3358 . . 3  |-  ( W  e.  (NrmVec  i^i CMetSp )  <->  ( W  e. NrmVec  /\  W  e. CMetSp )
)
21anbi1i 676 . 2  |-  ( ( W  e.  (NrmVec  i^i CMetSp )  /\  F  e. CMetSp )  <->  ( ( W  e. NrmVec  /\  W  e. CMetSp )  /\  F  e. CMetSp
) )
3 fveq2 5525 . . . . 5  |-  ( w  =  W  ->  (Scalar `  w )  =  (Scalar `  W ) )
4 isbn.1 . . . . 5  |-  F  =  (Scalar `  W )
53, 4syl6eqr 2333 . . . 4  |-  ( w  =  W  ->  (Scalar `  w )  =  F )
65eleq1d 2349 . . 3  |-  ( w  =  W  ->  (
(Scalar `  w )  e. CMetSp  <-> 
F  e. CMetSp ) )
7 df-bn 18758 . . 3  |- Ban  =  {
w  e.  (NrmVec  i^i CMetSp )  |  (Scalar `  w
)  e. CMetSp }
86, 7elrab2 2925 . 2  |-  ( W  e. Ban 
<->  ( W  e.  (NrmVec 
i^i CMetSp )  /\  F  e. CMetSp
) )
9 df-3an 936 . 2  |-  ( ( W  e. NrmVec  /\  W  e. CMetSp  /\  F  e. CMetSp )  <->  ( ( W  e. NrmVec  /\  W  e. CMetSp
)  /\  F  e. CMetSp ) )
102, 8, 93bitr4i 268 1  |-  ( W  e. Ban 
<->  ( W  e. NrmVec  /\  W  e. CMetSp  /\  F  e. CMetSp )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    i^i cin 3151   ` cfv 5255  Scalarcsca 13211  NrmVeccnvc 18104  CMetSpccms 18754  Bancbn 18755
This theorem is referenced by:  bnsca  18761  bnnvc  18762  bncms  18766  lssbn  18773  srabn  18777  ishl2  18787
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-bn 18758
  Copyright terms: Public domain W3C validator