Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbnd3b Unicode version

Theorem isbnd3b 26612
Description: A metric space is bounded iff the metric function maps to some bounded real interval. (Contributed by Mario Carneiro, 22-Sep-2015.)
Assertion
Ref Expression
isbnd3b  |-  ( M  e.  ( Bnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  E. x  e.  RR  A. y  e.  X  A. z  e.  X  ( y M z )  <_  x
) )
Distinct variable groups:    x, y,
z, M    x, X, y, z

Proof of Theorem isbnd3b
StepHypRef Expression
1 isbnd3 26611 . 2  |-  ( M  e.  ( Bnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x
) ) )
2 metf 17911 . . . . . . 7  |-  ( M  e.  ( Met `  X
)  ->  M :
( X  X.  X
) --> RR )
32adantr 451 . . . . . 6  |-  ( ( M  e.  ( Met `  X )  /\  x  e.  RR )  ->  M : ( X  X.  X ) --> RR )
4 ffn 5405 . . . . . 6  |-  ( M : ( X  X.  X ) --> RR  ->  M  Fn  ( X  X.  X ) )
5 ffnov 5964 . . . . . . 7  |-  ( M : ( X  X.  X ) --> ( 0 [,] x )  <->  ( M  Fn  ( X  X.  X
)  /\  A. y  e.  X  A. z  e.  X  ( y M z )  e.  ( 0 [,] x
) ) )
65baib 871 . . . . . 6  |-  ( M  Fn  ( X  X.  X )  ->  ( M : ( X  X.  X ) --> ( 0 [,] x )  <->  A. y  e.  X  A. z  e.  X  ( y M z )  e.  ( 0 [,] x
) ) )
73, 4, 63syl 18 . . . . 5  |-  ( ( M  e.  ( Met `  X )  /\  x  e.  RR )  ->  ( M : ( X  X.  X ) --> ( 0 [,] x )  <->  A. y  e.  X  A. z  e.  X  ( y M z )  e.  ( 0 [,] x
) ) )
8 0re 8854 . . . . . . . 8  |-  0  e.  RR
98a1i 10 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  x  e.  RR )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
0  e.  RR )
10 simplr 731 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  x  e.  RR )  /\  ( y  e.  X  /\  z  e.  X ) )  ->  x  e.  RR )
11 metcl 17913 . . . . . . . . 9  |-  ( ( M  e.  ( Met `  X )  /\  y  e.  X  /\  z  e.  X )  ->  (
y M z )  e.  RR )
12113expb 1152 . . . . . . . 8  |-  ( ( M  e.  ( Met `  X )  /\  (
y  e.  X  /\  z  e.  X )
)  ->  ( y M z )  e.  RR )
1312adantlr 695 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  x  e.  RR )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( y M z )  e.  RR )
14 metge0 17926 . . . . . . . . 9  |-  ( ( M  e.  ( Met `  X )  /\  y  e.  X  /\  z  e.  X )  ->  0  <_  ( y M z ) )
15143expb 1152 . . . . . . . 8  |-  ( ( M  e.  ( Met `  X )  /\  (
y  e.  X  /\  z  e.  X )
)  ->  0  <_  ( y M z ) )
1615adantlr 695 . . . . . . 7  |-  ( ( ( M  e.  ( Met `  X )  /\  x  e.  RR )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
0  <_  ( y M z ) )
17 elicc2 10731 . . . . . . . . 9  |-  ( ( 0  e.  RR  /\  x  e.  RR )  ->  ( ( y M z )  e.  ( 0 [,] x )  <-> 
( ( y M z )  e.  RR  /\  0  <_  ( y M z )  /\  ( y M z )  <_  x )
) )
18 df-3an 936 . . . . . . . . 9  |-  ( ( ( y M z )  e.  RR  /\  0  <_  ( y M z )  /\  (
y M z )  <_  x )  <->  ( (
( y M z )  e.  RR  /\  0  <_  ( y M z ) )  /\  ( y M z )  <_  x )
)
1917, 18syl6bb 252 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  x  e.  RR )  ->  ( ( y M z )  e.  ( 0 [,] x )  <-> 
( ( ( y M z )  e.  RR  /\  0  <_ 
( y M z ) )  /\  (
y M z )  <_  x ) ) )
2019baibd 875 . . . . . . 7  |-  ( ( ( 0  e.  RR  /\  x  e.  RR )  /\  ( ( y M z )  e.  RR  /\  0  <_ 
( y M z ) ) )  -> 
( ( y M z )  e.  ( 0 [,] x )  <-> 
( y M z )  <_  x )
)
219, 10, 13, 16, 20syl22anc 1183 . . . . . 6  |-  ( ( ( M  e.  ( Met `  X )  /\  x  e.  RR )  /\  ( y  e.  X  /\  z  e.  X ) )  -> 
( ( y M z )  e.  ( 0 [,] x )  <-> 
( y M z )  <_  x )
)
22212ralbidva 2596 . . . . 5  |-  ( ( M  e.  ( Met `  X )  /\  x  e.  RR )  ->  ( A. y  e.  X  A. z  e.  X  ( y M z )  e.  ( 0 [,] x )  <->  A. y  e.  X  A. z  e.  X  ( y M z )  <_  x ) )
237, 22bitrd 244 . . . 4  |-  ( ( M  e.  ( Met `  X )  /\  x  e.  RR )  ->  ( M : ( X  X.  X ) --> ( 0 [,] x )  <->  A. y  e.  X  A. z  e.  X  ( y M z )  <_  x ) )
2423rexbidva 2573 . . 3  |-  ( M  e.  ( Met `  X
)  ->  ( E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x )  <->  E. x  e.  RR  A. y  e.  X  A. z  e.  X  ( y M z )  <_  x
) )
2524pm5.32i 618 . 2  |-  ( ( M  e.  ( Met `  X )  /\  E. x  e.  RR  M : ( X  X.  X ) --> ( 0 [,] x ) )  <-> 
( M  e.  ( Met `  X )  /\  E. x  e.  RR  A. y  e.  X  A. z  e.  X  ( y M z )  <_  x
) )
261, 25bitri 240 1  |-  ( M  e.  ( Bnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  E. x  e.  RR  A. y  e.  X  A. z  e.  X  ( y M z )  <_  x
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 934    e. wcel 1696   A.wral 2556   E.wrex 2557   class class class wbr 4039    X. cxp 4703    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874   RRcr 8752   0cc0 8753    <_ cle 8884   [,]cicc 10675   Metcme 16386   Bndcbnd 26594
This theorem is referenced by:  equivbnd  26617  iccbnd  26667
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-er 6676  df-ec 6678  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-2 9820  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-icc 10679  df-xmet 16389  df-met 16390  df-bl 16391  df-bnd 26606
  Copyright terms: Public domain W3C validator