Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbndx Structured version   Unicode version

Theorem isbndx 26482
Description: A "bounded extended metric" (meaning that it satisfies the same condition as a bounded metric, but with "metric" replaced with "extended metric") is a metric and thus is bounded in the conventional sense. (Contributed by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
isbndx  |-  ( M  e.  ( Bnd `  X
)  <->  ( M  e.  ( * Met `  X
)  /\  A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M
) r ) ) )
Distinct variable groups:    x, r, M    X, r, x

Proof of Theorem isbndx
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 isbnd 26480 . 2  |-  ( M  e.  ( Bnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M
) r ) ) )
2 metxmet 18356 . . . 4  |-  ( M  e.  ( Met `  X
)  ->  M  e.  ( * Met `  X
) )
3 simpr 448 . . . . . 6  |-  ( ( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  /\  M  e.  ( * Met `  X
) )  ->  M  e.  ( * Met `  X
) )
4 xmetf 18351 . . . . . . . 8  |-  ( M  e.  ( * Met `  X )  ->  M : ( X  X.  X ) --> RR* )
5 ffn 5583 . . . . . . . 8  |-  ( M : ( X  X.  X ) --> RR*  ->  M  Fn  ( X  X.  X ) )
63, 4, 53syl 19 . . . . . . 7  |-  ( ( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  /\  M  e.  ( * Met `  X
) )  ->  M  Fn  ( X  X.  X
) )
7 simprr 734 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  ( * Met `  X
)  /\  x  e.  X )  /\  (
r  e.  RR+  /\  X  =  ( x (
ball `  M )
r ) ) )  ->  X  =  ( x ( ball `  M
) r ) )
8 rpxr 10611 . . . . . . . . . . . . . . . . . 18  |-  ( r  e.  RR+  ->  r  e. 
RR* )
9 eqid 2435 . . . . . . . . . . . . . . . . . . . 20  |-  ( `' M " RR )  =  ( `' M " RR )
109blssec 18457 . . . . . . . . . . . . . . . . . . 19  |-  ( ( M  e.  ( * Met `  X )  /\  x  e.  X  /\  r  e.  RR* )  ->  ( x ( ball `  M ) r ) 
C_  [ x ]
( `' M " RR ) )
11103expa 1153 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( M  e.  ( * Met `  X
)  /\  x  e.  X )  /\  r  e.  RR* )  ->  (
x ( ball `  M
) r )  C_  [ x ] ( `' M " RR ) )
128, 11sylan2 461 . . . . . . . . . . . . . . . . 17  |-  ( ( ( M  e.  ( * Met `  X
)  /\  x  e.  X )  /\  r  e.  RR+ )  ->  (
x ( ball `  M
) r )  C_  [ x ] ( `' M " RR ) )
1312adantrr 698 . . . . . . . . . . . . . . . 16  |-  ( ( ( M  e.  ( * Met `  X
)  /\  x  e.  X )  /\  (
r  e.  RR+  /\  X  =  ( x (
ball `  M )
r ) ) )  ->  ( x (
ball `  M )
r )  C_  [ x ] ( `' M " RR ) )
147, 13eqsstrd 3374 . . . . . . . . . . . . . . 15  |-  ( ( ( M  e.  ( * Met `  X
)  /\  x  e.  X )  /\  (
r  e.  RR+  /\  X  =  ( x (
ball `  M )
r ) ) )  ->  X  C_  [ x ] ( `' M " RR ) )
1514sselda 3340 . . . . . . . . . . . . . 14  |-  ( ( ( ( M  e.  ( * Met `  X
)  /\  x  e.  X )  /\  (
r  e.  RR+  /\  X  =  ( x (
ball `  M )
r ) ) )  /\  y  e.  X
)  ->  y  e.  [ x ] ( `' M " RR ) )
16 vex 2951 . . . . . . . . . . . . . . 15  |-  y  e. 
_V
17 vex 2951 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
1816, 17elec 6936 . . . . . . . . . . . . . 14  |-  ( y  e.  [ x ]
( `' M " RR )  <->  x ( `' M " RR ) y )
1915, 18sylib 189 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  ( * Met `  X
)  /\  x  e.  X )  /\  (
r  e.  RR+  /\  X  =  ( x (
ball `  M )
r ) ) )  /\  y  e.  X
)  ->  x ( `' M " RR ) y )
209xmeterval 18454 . . . . . . . . . . . . . 14  |-  ( M  e.  ( * Met `  X )  ->  (
x ( `' M " RR ) y  <->  ( x  e.  X  /\  y  e.  X  /\  (
x M y )  e.  RR ) ) )
2120ad3antrrr 711 . . . . . . . . . . . . 13  |-  ( ( ( ( M  e.  ( * Met `  X
)  /\  x  e.  X )  /\  (
r  e.  RR+  /\  X  =  ( x (
ball `  M )
r ) ) )  /\  y  e.  X
)  ->  ( x
( `' M " RR ) y  <->  ( x  e.  X  /\  y  e.  X  /\  (
x M y )  e.  RR ) ) )
2219, 21mpbid 202 . . . . . . . . . . . 12  |-  ( ( ( ( M  e.  ( * Met `  X
)  /\  x  e.  X )  /\  (
r  e.  RR+  /\  X  =  ( x (
ball `  M )
r ) ) )  /\  y  e.  X
)  ->  ( x  e.  X  /\  y  e.  X  /\  (
x M y )  e.  RR ) )
2322simp3d 971 . . . . . . . . . . 11  |-  ( ( ( ( M  e.  ( * Met `  X
)  /\  x  e.  X )  /\  (
r  e.  RR+  /\  X  =  ( x (
ball `  M )
r ) ) )  /\  y  e.  X
)  ->  ( x M y )  e.  RR )
2423ralrimiva 2781 . . . . . . . . . 10  |-  ( ( ( M  e.  ( * Met `  X
)  /\  x  e.  X )  /\  (
r  e.  RR+  /\  X  =  ( x (
ball `  M )
r ) ) )  ->  A. y  e.  X  ( x M y )  e.  RR )
2524rexlimdvaa 2823 . . . . . . . . 9  |-  ( ( M  e.  ( * Met `  X )  /\  x  e.  X
)  ->  ( E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  ->  A. y  e.  X  ( x M y )  e.  RR ) )
2625ralimdva 2776 . . . . . . . 8  |-  ( M  e.  ( * Met `  X )  ->  ( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  ->  A. x  e.  X  A. y  e.  X  ( x M y )  e.  RR ) )
2726impcom 420 . . . . . . 7  |-  ( ( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  /\  M  e.  ( * Met `  X
) )  ->  A. x  e.  X  A. y  e.  X  ( x M y )  e.  RR )
28 ffnov 6166 . . . . . . 7  |-  ( M : ( X  X.  X ) --> RR  <->  ( M  Fn  ( X  X.  X
)  /\  A. x  e.  X  A. y  e.  X  ( x M y )  e.  RR ) )
296, 27, 28sylanbrc 646 . . . . . 6  |-  ( ( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  /\  M  e.  ( * Met `  X
) )  ->  M : ( X  X.  X ) --> RR )
30 ismet2 18355 . . . . . 6  |-  ( M  e.  ( Met `  X
)  <->  ( M  e.  ( * Met `  X
)  /\  M :
( X  X.  X
) --> RR ) )
313, 29, 30sylanbrc 646 . . . . 5  |-  ( ( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  /\  M  e.  ( * Met `  X
) )  ->  M  e.  ( Met `  X
) )
3231ex 424 . . . 4  |-  ( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  ->  ( M  e.  ( * Met `  X
)  ->  M  e.  ( Met `  X ) ) )
332, 32impbid2 196 . . 3  |-  ( A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r )  ->  ( M  e.  ( Met `  X
)  <->  M  e.  ( * Met `  X ) ) )
3433pm5.32ri 620 . 2  |-  ( ( M  e.  ( Met `  X )  /\  A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M ) r ) )  <->  ( M  e.  ( * Met `  X
)  /\  A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M
) r ) ) )
351, 34bitri 241 1  |-  ( M  e.  ( Bnd `  X
)  <->  ( M  e.  ( * Met `  X
)  /\  A. x  e.  X  E. r  e.  RR+  X  =  ( x ( ball `  M
) r ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698    C_ wss 3312   class class class wbr 4204    X. cxp 4868   `'ccnv 4869   "cima 4873    Fn wfn 5441   -->wf 5442   ` cfv 5446  (class class class)co 6073   [cec 6895   RRcr 8981   RR*cxr 9111   RR+crp 10604   * Metcxmt 16678   Metcme 16679   ballcbl 16680   Bndcbnd 26467
This theorem is referenced by:  isbnd2  26483  blbnd  26487  ismtybndlem  26506
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-er 6897  df-ec 6899  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-2 10050  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-bnd 26479
  Copyright terms: Public domain W3C validator