MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscard Structured version   Unicode version

Theorem iscard 7862
Description: Two ways to express the property of being a cardinal number. (Contributed by Mario Carneiro, 15-Jan-2013.)
Assertion
Ref Expression
iscard  |-  ( (
card `  A )  =  A  <->  ( A  e.  On  /\  A. x  e.  A  x  ~<  A ) )
Distinct variable group:    x, A

Proof of Theorem iscard
StepHypRef Expression
1 cardon 7831 . . 3  |-  ( card `  A )  e.  On
2 eleq1 2496 . . 3  |-  ( (
card `  A )  =  A  ->  ( (
card `  A )  e.  On  <->  A  e.  On ) )
31, 2mpbii 203 . 2  |-  ( (
card `  A )  =  A  ->  A  e.  On )
4 cardonle 7844 . . . 4  |-  ( A  e.  On  ->  ( card `  A )  C_  A )
5 eqss 3363 . . . . 5  |-  ( (
card `  A )  =  A  <->  ( ( card `  A )  C_  A  /\  A  C_  ( card `  A ) ) )
65baibr 873 . . . 4  |-  ( (
card `  A )  C_  A  ->  ( A  C_  ( card `  A
)  <->  ( card `  A
)  =  A ) )
74, 6syl 16 . . 3  |-  ( A  e.  On  ->  ( A  C_  ( card `  A
)  <->  ( card `  A
)  =  A ) )
8 onelon 4606 . . . . . 6  |-  ( ( A  e.  On  /\  x  e.  A )  ->  x  e.  On )
9 onenon 7836 . . . . . . 7  |-  ( A  e.  On  ->  A  e.  dom  card )
109adantr 452 . . . . . 6  |-  ( ( A  e.  On  /\  x  e.  A )  ->  A  e.  dom  card )
11 cardsdomel 7861 . . . . . 6  |-  ( ( x  e.  On  /\  A  e.  dom  card )  ->  ( x  ~<  A  <->  x  e.  ( card `  A )
) )
128, 10, 11syl2anc 643 . . . . 5  |-  ( ( A  e.  On  /\  x  e.  A )  ->  ( x  ~<  A  <->  x  e.  ( card `  A )
) )
1312ralbidva 2721 . . . 4  |-  ( A  e.  On  ->  ( A. x  e.  A  x  ~<  A  <->  A. x  e.  A  x  e.  ( card `  A )
) )
14 dfss3 3338 . . . 4  |-  ( A 
C_  ( card `  A
)  <->  A. x  e.  A  x  e.  ( card `  A ) )
1513, 14syl6rbbr 256 . . 3  |-  ( A  e.  On  ->  ( A  C_  ( card `  A
)  <->  A. x  e.  A  x  ~<  A ) )
167, 15bitr3d 247 . 2  |-  ( A  e.  On  ->  (
( card `  A )  =  A  <->  A. x  e.  A  x  ~<  A ) )
173, 16biadan2 624 1  |-  ( (
card `  A )  =  A  <->  ( A  e.  On  /\  A. x  e.  A  x  ~<  A ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705    C_ wss 3320   class class class wbr 4212   Oncon0 4581   dom cdm 4878   ` cfv 5454    ~< csdm 7108   cardccrd 7822
This theorem is referenced by:  cardprclem  7866  cardmin2  7885  infxpenlem  7895  alephsuc2  7961  cardmin  8439  alephreg  8457  pwcfsdom  8458  winalim2  8571  gchina  8574  inar1  8650  r1tskina  8657  gruina  8693
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-card 7826
  Copyright terms: Public domain W3C validator