MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscard3 Unicode version

Theorem iscard3 7720
Description: Two ways to express the property of being a cardinal number. (Contributed by NM, 9-Nov-2003.)
Assertion
Ref Expression
iscard3  |-  ( (
card `  A )  =  A  <->  A  e.  ( om  u.  ran  aleph ) )

Proof of Theorem iscard3
StepHypRef Expression
1 cardon 7577 . . . . . . . . 9  |-  ( card `  A )  e.  On
2 eleq1 2343 . . . . . . . . 9  |-  ( (
card `  A )  =  A  ->  ( (
card `  A )  e.  On  <->  A  e.  On ) )
31, 2mpbii 202 . . . . . . . 8  |-  ( (
card `  A )  =  A  ->  A  e.  On )
4 eloni 4402 . . . . . . . 8  |-  ( A  e.  On  ->  Ord  A )
53, 4syl 15 . . . . . . 7  |-  ( (
card `  A )  =  A  ->  Ord  A
)
6 ordom 4665 . . . . . . 7  |-  Ord  om
7 ordtri2or 4488 . . . . . . 7  |-  ( ( Ord  A  /\  Ord  om )  ->  ( A  e.  om  \/  om  C_  A
) )
85, 6, 7sylancl 643 . . . . . 6  |-  ( (
card `  A )  =  A  ->  ( A  e.  om  \/  om  C_  A ) )
98ord 366 . . . . 5  |-  ( (
card `  A )  =  A  ->  ( -.  A  e.  om  ->  om  C_  A ) )
10 isinfcard 7719 . . . . . . 7  |-  ( ( om  C_  A  /\  ( card `  A )  =  A )  <->  A  e.  ran  aleph )
1110biimpi 186 . . . . . 6  |-  ( ( om  C_  A  /\  ( card `  A )  =  A )  ->  A  e.  ran  aleph )
1211expcom 424 . . . . 5  |-  ( (
card `  A )  =  A  ->  ( om  C_  A  ->  A  e. 
ran  aleph ) )
139, 12syld 40 . . . 4  |-  ( (
card `  A )  =  A  ->  ( -.  A  e.  om  ->  A  e.  ran  aleph ) )
1413orrd 367 . . 3  |-  ( (
card `  A )  =  A  ->  ( A  e.  om  \/  A  e.  ran  aleph ) )
15 cardnn 7596 . . . 4  |-  ( A  e.  om  ->  ( card `  A )  =  A )
1610bicomi 193 . . . . 5  |-  ( A  e.  ran  aleph  <->  ( om  C_  A  /\  ( card `  A )  =  A ) )
1716simprbi 450 . . . 4  |-  ( A  e.  ran  aleph  ->  ( card `  A )  =  A )
1815, 17jaoi 368 . . 3  |-  ( ( A  e.  om  \/  A  e.  ran  aleph )  -> 
( card `  A )  =  A )
1914, 18impbii 180 . 2  |-  ( (
card `  A )  =  A  <->  ( A  e. 
om  \/  A  e.  ran  aleph ) )
20 elun 3316 . 2  |-  ( A  e.  ( om  u.  ran  aleph )  <->  ( A  e.  om  \/  A  e. 
ran  aleph ) )
2119, 20bitr4i 243 1  |-  ( (
card `  A )  =  A  <->  A  e.  ( om  u.  ran  aleph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684    u. cun 3150    C_ wss 3152   Ord word 4391   Oncon0 4392   omcom 4656   ran crn 4690   ` cfv 5255   cardccrd 7568   alephcale 7569
This theorem is referenced by:  cardnum  7721  carduniima  7723  cardinfima  7724  cfpwsdom  8206  gch2  8301
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-oi 7225  df-har 7272  df-card 7572  df-aleph 7573
  Copyright terms: Public domain W3C validator