MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscau Structured version   Unicode version

Theorem iscau 19231
Description: Express the property " F is a Cauchy sequence of metric  D." Part of Definition 1.4-3 of [Kreyszig] p. 28. The condition  F  C_  ( CC  X.  X ) allows us to use objects more general than sequences when convenient; see the comment in df-lm 17295. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
iscau  |-  ( D  e.  ( * Met `  X )  ->  ( F  e.  ( Cau `  D )  <->  ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. k  e.  ZZ  ( F  |`  ( ZZ>= `  k ) ) : ( ZZ>= `  k ) --> ( ( F `  k ) ( ball `  D ) x ) ) ) )
Distinct variable groups:    x, k, D    k, F, x    k, X, x

Proof of Theorem iscau
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 caufval 19230 . . 3  |-  ( D  e.  ( * Met `  X )  ->  ( Cau `  D )  =  { f  e.  ( X  ^pm  CC )  |  A. x  e.  RR+  E. k  e.  ZZ  (
f  |`  ( ZZ>= `  k
) ) : (
ZZ>= `  k ) --> ( ( f `  k
) ( ball `  D
) x ) } )
21eleq2d 2505 . 2  |-  ( D  e.  ( * Met `  X )  ->  ( F  e.  ( Cau `  D )  <->  F  e.  { f  e.  ( X 
^pm  CC )  |  A. x  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) x ) } ) )
3 reseq1 5142 . . . . . 6  |-  ( f  =  F  ->  (
f  |`  ( ZZ>= `  k
) )  =  ( F  |`  ( ZZ>= `  k ) ) )
4 eqidd 2439 . . . . . 6  |-  ( f  =  F  ->  ( ZZ>=
`  k )  =  ( ZZ>= `  k )
)
5 fveq1 5729 . . . . . . 7  |-  ( f  =  F  ->  (
f `  k )  =  ( F `  k ) )
65oveq1d 6098 . . . . . 6  |-  ( f  =  F  ->  (
( f `  k
) ( ball `  D
) x )  =  ( ( F `  k ) ( ball `  D ) x ) )
73, 4, 6feq123d 5585 . . . . 5  |-  ( f  =  F  ->  (
( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
x )  <->  ( F  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( F `  k ) ( ball `  D
) x ) ) )
87rexbidv 2728 . . . 4  |-  ( f  =  F  ->  ( E. k  e.  ZZ  ( f  |`  ( ZZ>=
`  k ) ) : ( ZZ>= `  k
) --> ( ( f `
 k ) (
ball `  D )
x )  <->  E. k  e.  ZZ  ( F  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( F `  k ) ( ball `  D
) x ) ) )
98ralbidv 2727 . . 3  |-  ( f  =  F  ->  ( A. x  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) x )  <->  A. x  e.  RR+  E. k  e.  ZZ  ( F  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( F `  k ) ( ball `  D
) x ) ) )
109elrab 3094 . 2  |-  ( F  e.  { f  e.  ( X  ^pm  CC )  |  A. x  e.  RR+  E. k  e.  ZZ  ( f  |`  ( ZZ>= `  k )
) : ( ZZ>= `  k ) --> ( ( f `  k ) ( ball `  D
) x ) }  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. k  e.  ZZ  ( F  |`  ( ZZ>= `  k
) ) : (
ZZ>= `  k ) --> ( ( F `  k
) ( ball `  D
) x ) ) )
112, 10syl6bb 254 1  |-  ( D  e.  ( * Met `  X )  ->  ( F  e.  ( Cau `  D )  <->  ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. k  e.  ZZ  ( F  |`  ( ZZ>= `  k ) ) : ( ZZ>= `  k ) --> ( ( F `  k ) ( ball `  D ) x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708   {crab 2711    |` cres 4882   -->wf 5452   ` cfv 5456  (class class class)co 6083    ^pm cpm 7021   CCcc 8990   ZZcz 10284   ZZ>=cuz 10490   RR+crp 10614   * Metcxmt 16688   ballcbl 16690   Caucca 19208
This theorem is referenced by:  iscau2  19232  caufpm  19237  lmcau  19267
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-map 7022  df-xr 9126  df-xmet 16697  df-cau 19211
  Copyright terms: Public domain W3C validator