MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscau2 Unicode version

Theorem iscau2 18719
Description: Express the property " F is a Cauchy sequence of metric  D," using an abitrary set of upper integers. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
iscau2  |-  ( D  e.  ( * Met `  X )  ->  ( F  e.  ( Cau `  D )  <->  ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) ) )
Distinct variable groups:    j, k, x, D    j, F, k, x    j, X, k, x

Proof of Theorem iscau2
StepHypRef Expression
1 iscau 18718 . 2  |-  ( D  e.  ( * Met `  X )  ->  ( F  e.  ( Cau `  D )  <->  ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j ) ) : ( ZZ>= `  j ) --> ( ( F `  j ) ( ball `  D ) x ) ) ) )
2 elfvdm 5570 . . . . . . . . . 10  |-  ( D  e.  ( * Met `  X )  ->  X  e.  dom  * Met )
3 cnex 8834 . . . . . . . . . 10  |-  CC  e.  _V
4 elpmg 6802 . . . . . . . . . 10  |-  ( ( X  e.  dom  * Met  /\  CC  e.  _V )  ->  ( F  e.  ( X  ^pm  CC ) 
<->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) ) )
52, 3, 4sylancl 643 . . . . . . . . 9  |-  ( D  e.  ( * Met `  X )  ->  ( F  e.  ( X  ^pm  CC )  <->  ( Fun  F  /\  F  C_  ( CC  X.  X ) ) ) )
65simprbda 606 . . . . . . . 8  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  ( X  ^pm  CC )
)  ->  Fun  F )
7 ffvresb 5706 . . . . . . . 8  |-  ( Fun 
F  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( ( F `  j
) ( ball `  D
) x )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( ( F `  j
) ( ball `  D
) x ) ) ) )
86, 7syl 15 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  ( X  ^pm  CC )
)  ->  ( ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( ( F `  j
) ( ball `  D
) x )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( ( F `  j
) ( ball `  D
) x ) ) ) )
98rexbidv 2577 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  ( X  ^pm  CC )
)  ->  ( E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( ( F `  j
) ( ball `  D
) x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( ( F `  j
) ( ball `  D
) x ) ) ) )
109adantr 451 . . . . 5  |-  ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  ( X  ^pm  CC ) )  /\  x  e.  RR+ )  ->  ( E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( ( F `  j
) ( ball `  D
) x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( ( F `  j
) ( ball `  D
) x ) ) ) )
11 uzid 10258 . . . . . . . . . . 11  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
1211adantl 452 . . . . . . . . . 10  |-  ( ( ( D  e.  ( * Met `  X
)  /\  x  e.  RR+ )  /\  j  e.  ZZ )  ->  j  e.  ( ZZ>= `  j )
)
13 eleq1 2356 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
k  e.  dom  F  <->  j  e.  dom  F ) )
14 fveq2 5541 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
1514eleq1d 2362 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( F `  k
)  e.  ( ( F `  j ) ( ball `  D
) x )  <->  ( F `  j )  e.  ( ( F `  j
) ( ball `  D
) x ) ) )
1613, 15anbi12d 691 . . . . . . . . . . 11  |-  ( k  =  j  ->  (
( k  e.  dom  F  /\  ( F `  k )  e.  ( ( F `  j
) ( ball `  D
) x ) )  <-> 
( j  e.  dom  F  /\  ( F `  j )  e.  ( ( F `  j
) ( ball `  D
) x ) ) ) )
1716rspcv 2893 . . . . . . . . . 10  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  ( ( F `
 j ) (
ball `  D )
x ) )  -> 
( j  e.  dom  F  /\  ( F `  j )  e.  ( ( F `  j
) ( ball `  D
) x ) ) ) )
1812, 17syl 15 . . . . . . . . 9  |-  ( ( ( D  e.  ( * Met `  X
)  /\  x  e.  RR+ )  /\  j  e.  ZZ )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  ( ( F `  j ) ( ball `  D
) x ) )  ->  ( j  e. 
dom  F  /\  ( F `  j )  e.  ( ( F `  j ) ( ball `  D ) x ) ) ) )
19 n0i 3473 . . . . . . . . . . . 12  |-  ( ( F `  j )  e.  ( ( F `
 j ) (
ball `  D )
x )  ->  -.  ( ( F `  j ) ( ball `  D ) x )  =  (/) )
20 blf 17977 . . . . . . . . . . . . . . 15  |-  ( D  e.  ( * Met `  X )  ->  ( ball `  D ) : ( X  X.  RR* )
--> ~P X )
21 fdm 5409 . . . . . . . . . . . . . . 15  |-  ( (
ball `  D ) : ( X  X.  RR* ) --> ~P X  ->  dom  ( ball `  D
)  =  ( X  X.  RR* ) )
2220, 21syl 15 . . . . . . . . . . . . . 14  |-  ( D  e.  ( * Met `  X )  ->  dom  ( ball `  D )  =  ( X  X.  RR* ) )
23 ndmovg 6019 . . . . . . . . . . . . . . 15  |-  ( ( dom  ( ball `  D
)  =  ( X  X.  RR* )  /\  -.  ( ( F `  j )  e.  X  /\  x  e.  RR* )
)  ->  ( ( F `  j )
( ball `  D )
x )  =  (/) )
2423ex 423 . . . . . . . . . . . . . 14  |-  ( dom  ( ball `  D
)  =  ( X  X.  RR* )  ->  ( -.  ( ( F `  j )  e.  X  /\  x  e.  RR* )  ->  ( ( F `  j ) ( ball `  D ) x )  =  (/) ) )
2522, 24syl 15 . . . . . . . . . . . . 13  |-  ( D  e.  ( * Met `  X )  ->  ( -.  ( ( F `  j )  e.  X  /\  x  e.  RR* )  ->  ( ( F `  j ) ( ball `  D ) x )  =  (/) ) )
2625con1d 116 . . . . . . . . . . . 12  |-  ( D  e.  ( * Met `  X )  ->  ( -.  ( ( F `  j ) ( ball `  D ) x )  =  (/)  ->  ( ( F `  j )  e.  X  /\  x  e.  RR* ) ) )
27 simpl 443 . . . . . . . . . . . 12  |-  ( ( ( F `  j
)  e.  X  /\  x  e.  RR* )  -> 
( F `  j
)  e.  X )
2819, 26, 27syl56 30 . . . . . . . . . . 11  |-  ( D  e.  ( * Met `  X )  ->  (
( F `  j
)  e.  ( ( F `  j ) ( ball `  D
) x )  -> 
( F `  j
)  e.  X ) )
2928adantld 453 . . . . . . . . . 10  |-  ( D  e.  ( * Met `  X )  ->  (
( j  e.  dom  F  /\  ( F `  j )  e.  ( ( F `  j
) ( ball `  D
) x ) )  ->  ( F `  j )  e.  X
) )
3029ad2antrr 706 . . . . . . . . 9  |-  ( ( ( D  e.  ( * Met `  X
)  /\  x  e.  RR+ )  /\  j  e.  ZZ )  ->  (
( j  e.  dom  F  /\  ( F `  j )  e.  ( ( F `  j
) ( ball `  D
) x ) )  ->  ( F `  j )  e.  X
) )
3118, 30syld 40 . . . . . . . 8  |-  ( ( ( D  e.  ( * Met `  X
)  /\  x  e.  RR+ )  /\  j  e.  ZZ )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  ( ( F `  j ) ( ball `  D
) x ) )  ->  ( F `  j )  e.  X
) )
3214eleq1d 2362 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( F `  k
)  e.  X  <->  ( F `  j )  e.  X
) )
3314oveq1d 5889 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  (
( F `  k
) D ( F `
 j ) )  =  ( ( F `
 j ) D ( F `  j
) ) )
3433breq1d 4049 . . . . . . . . . . . 12  |-  ( k  =  j  ->  (
( ( F `  k ) D ( F `  j ) )  <  x  <->  ( ( F `  j ) D ( F `  j ) )  < 
x ) )
3513, 32, 343anbi123d 1252 . . . . . . . . . . 11  |-  ( k  =  j  ->  (
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  <-> 
( j  e.  dom  F  /\  ( F `  j )  e.  X  /\  ( ( F `  j ) D ( F `  j ) )  <  x ) ) )
3635rspcv 2893 . . . . . . . . . 10  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x )  -> 
( j  e.  dom  F  /\  ( F `  j )  e.  X  /\  ( ( F `  j ) D ( F `  j ) )  <  x ) ) )
3712, 36syl 15 . . . . . . . . 9  |-  ( ( ( D  e.  ( * Met `  X
)  /\  x  e.  RR+ )  /\  j  e.  ZZ )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  ->  ( j  e. 
dom  F  /\  ( F `  j )  e.  X  /\  (
( F `  j
) D ( F `
 j ) )  <  x ) ) )
38 simp2 956 . . . . . . . . 9  |-  ( ( j  e.  dom  F  /\  ( F `  j
)  e.  X  /\  ( ( F `  j ) D ( F `  j ) )  <  x )  ->  ( F `  j )  e.  X
)
3937, 38syl6 29 . . . . . . . 8  |-  ( ( ( D  e.  ( * Met `  X
)  /\  x  e.  RR+ )  /\  j  e.  ZZ )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  ->  ( F `  j )  e.  X
) )
40 rpxr 10377 . . . . . . . . . . . . . . . 16  |-  ( x  e.  RR+  ->  x  e. 
RR* )
41 elbl 17965 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( * Met `  X )  /\  ( F `  j )  e.  X  /\  x  e.  RR* )  ->  ( ( F `  k )  e.  ( ( F `  j
) ( ball `  D
) x )  <->  ( ( F `  k )  e.  X  /\  (
( F `  j
) D ( F `
 k ) )  <  x ) ) )
4240, 41syl3an3 1217 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( * Met `  X )  /\  ( F `  j )  e.  X  /\  x  e.  RR+ )  ->  ( ( F `  k )  e.  ( ( F `  j
) ( ball `  D
) x )  <->  ( ( F `  k )  e.  X  /\  (
( F `  j
) D ( F `
 k ) )  <  x ) ) )
43 xmetsym 17928 . . . . . . . . . . . . . . . . . . 19  |-  ( ( D  e.  ( * Met `  X )  /\  ( F `  j )  e.  X  /\  ( F `  k
)  e.  X )  ->  ( ( F `
 j ) D ( F `  k
) )  =  ( ( F `  k
) D ( F `
 j ) ) )
44433expa 1151 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( D  e.  ( * Met `  X
)  /\  ( F `  j )  e.  X
)  /\  ( F `  k )  e.  X
)  ->  ( ( F `  j ) D ( F `  k ) )  =  ( ( F `  k ) D ( F `  j ) ) )
45443adantl3 1113 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  ( * Met `  X
)  /\  ( F `  j )  e.  X  /\  x  e.  RR+ )  /\  ( F `  k
)  e.  X )  ->  ( ( F `
 j ) D ( F `  k
) )  =  ( ( F `  k
) D ( F `
 j ) ) )
4645breq1d 4049 . . . . . . . . . . . . . . . 16  |-  ( ( ( D  e.  ( * Met `  X
)  /\  ( F `  j )  e.  X  /\  x  e.  RR+ )  /\  ( F `  k
)  e.  X )  ->  ( ( ( F `  j ) D ( F `  k ) )  < 
x  <->  ( ( F `
 k ) D ( F `  j
) )  <  x
) )
4746pm5.32da 622 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( * Met `  X )  /\  ( F `  j )  e.  X  /\  x  e.  RR+ )  ->  ( ( ( F `
 k )  e.  X  /\  ( ( F `  j ) D ( F `  k ) )  < 
x )  <->  ( ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) )
4842, 47bitrd 244 . . . . . . . . . . . . . 14  |-  ( ( D  e.  ( * Met `  X )  /\  ( F `  j )  e.  X  /\  x  e.  RR+ )  ->  ( ( F `  k )  e.  ( ( F `  j
) ( ball `  D
) x )  <->  ( ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) )
49483com23 1157 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( * Met `  X )  /\  x  e.  RR+  /\  ( F `  j
)  e.  X )  ->  ( ( F `
 k )  e.  ( ( F `  j ) ( ball `  D ) x )  <-> 
( ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) ) )
5049anbi2d 684 . . . . . . . . . . . 12  |-  ( ( D  e.  ( * Met `  X )  /\  x  e.  RR+  /\  ( F `  j
)  e.  X )  ->  ( ( k  e.  dom  F  /\  ( F `  k )  e.  ( ( F `
 j ) (
ball `  D )
x ) )  <->  ( k  e.  dom  F  /\  (
( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) ) ) )
51 3anass 938 . . . . . . . . . . . 12  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  <-> 
( k  e.  dom  F  /\  ( ( F `
 k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  < 
x ) ) )
5250, 51syl6bbr 254 . . . . . . . . . . 11  |-  ( ( D  e.  ( * Met `  X )  /\  x  e.  RR+  /\  ( F `  j
)  e.  X )  ->  ( ( k  e.  dom  F  /\  ( F `  k )  e.  ( ( F `
 j ) (
ball `  D )
x ) )  <->  ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) )
5352ralbidv 2576 . . . . . . . . . 10  |-  ( ( D  e.  ( * Met `  X )  /\  x  e.  RR+  /\  ( F `  j
)  e.  X )  ->  ( A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( ( F `  j
) ( ball `  D
) x ) )  <->  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) ) )
54533expia 1153 . . . . . . . . 9  |-  ( ( D  e.  ( * Met `  X )  /\  x  e.  RR+ )  ->  ( ( F `
 j )  e.  X  ->  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  ( ( F `
 j ) (
ball `  D )
x ) )  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) ) ) )
5554adantr 451 . . . . . . . 8  |-  ( ( ( D  e.  ( * Met `  X
)  /\  x  e.  RR+ )  /\  j  e.  ZZ )  ->  (
( F `  j
)  e.  X  -> 
( A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( ( F `  j
) ( ball `  D
) x ) )  <->  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) ) ) )
5631, 39, 55pm5.21ndd 343 . . . . . . 7  |-  ( ( ( D  e.  ( * Met `  X
)  /\  x  e.  RR+ )  /\  j  e.  ZZ )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  ( ( F `  j ) ( ball `  D
) x ) )  <->  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) ) )
5756rexbidva 2573 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  x  e.  RR+ )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  ( ( F `  j
) ( ball `  D
) x ) )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) )
5857adantlr 695 . . . . 5  |-  ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  ( X  ^pm  CC ) )  /\  x  e.  RR+ )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  ( ( F `
 j ) (
ball `  D )
x ) )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) ) )
5910, 58bitrd 244 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  ( X  ^pm  CC ) )  /\  x  e.  RR+ )  ->  ( E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( ( F `  j
) ( ball `  D
) x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) ) )
6059ralbidva 2572 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  ( X  ^pm  CC )
)  ->  ( A. x  e.  RR+  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j )
) : ( ZZ>= `  j ) --> ( ( F `  j ) ( ball `  D
) x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) ) )
6160pm5.32da 622 . 2  |-  ( D  e.  ( * Met `  X )  ->  (
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  ZZ  ( F  |`  ( ZZ>= `  j
) ) : (
ZZ>= `  j ) --> ( ( F `  j
) ( ball `  D
) x ) )  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) ) )
621, 61bitrd 244 1  |-  ( D  e.  ( * Met `  X )  ->  ( F  e.  ( Cau `  D )  <->  ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   _Vcvv 2801    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   class class class wbr 4039    X. cxp 4703   dom cdm 4705    |` cres 4707   Fun wfun 5265   -->wf 5267   ` cfv 5271  (class class class)co 5874    ^pm cpm 6789   CCcc 8751   RR*cxr 8882    < clt 8883   ZZcz 10040   ZZ>=cuz 10246   RR+crp 10370   * Metcxmt 16385   ballcbl 16387   Caucca 18695
This theorem is referenced by:  iscau3  18720  iscau4  18721  caun0  18723  caussi  18739
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-neg 9056  df-z 10041  df-uz 10247  df-rp 10371  df-xadd 10469  df-xmet 16389  df-bl 16391  df-cau 18698
  Copyright terms: Public domain W3C validator