MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscau3 Unicode version

Theorem iscau3 18720
Description: Express the Cauchy sequence property in the more conventional three-quantifier form. (Contributed by NM, 19-Dec-2006.) (Revised by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
iscau3.2  |-  Z  =  ( ZZ>= `  M )
iscau3.3  |-  ( ph  ->  D  e.  ( * Met `  X ) )
iscau3.4  |-  ( ph  ->  M  e.  ZZ )
Assertion
Ref Expression
iscau3  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x ) ) ) )
Distinct variable groups:    j, k, m, x, D    j, F, k, m, x    ph, j,
k, x    j, X, k, m, x    j, M   
j, Z, k, x
Allowed substitution hints:    ph( m)    M( x, k, m)    Z( m)

Proof of Theorem iscau3
StepHypRef Expression
1 iscau3.3 . . 3  |-  ( ph  ->  D  e.  ( * Met `  X ) )
2 iscau2 18719 . . 3  |-  ( D  e.  ( * Met `  X )  ->  ( F  e.  ( Cau `  D )  <->  ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) ) )
31, 2syl 15 . 2  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) ) )
41adantr 451 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X  ^pm  CC ) )  ->  D  e.  ( * Met `  X
) )
5 ssid 3210 . . . . . . 7  |-  ZZ  C_  ZZ
6 simpr 447 . . . . . . 7  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X )  ->  ( F `  k )  e.  X
)
7 eleq1 2356 . . . . . . 7  |-  ( ( F `  k )  =  ( F `  j )  ->  (
( F `  k
)  e.  X  <->  ( F `  j )  e.  X
) )
8 eleq1 2356 . . . . . . 7  |-  ( ( F `  k )  =  ( F `  m )  ->  (
( F `  k
)  e.  X  <->  ( F `  m )  e.  X
) )
9 xmetsym 17928 . . . . . . . 8  |-  ( ( D  e.  ( * Met `  X )  /\  ( F `  j )  e.  X  /\  ( F `  k
)  e.  X )  ->  ( ( F `
 j ) D ( F `  k
) )  =  ( ( F `  k
) D ( F `
 j ) ) )
109fveq2d 5545 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  ( F `  j )  e.  X  /\  ( F `  k
)  e.  X )  ->  (  _I  `  ( ( F `  j ) D ( F `  k ) ) )  =  (  _I  `  ( ( F `  k ) D ( F `  j ) ) ) )
11 xmetsym 17928 . . . . . . . 8  |-  ( ( D  e.  ( * Met `  X )  /\  ( F `  m )  e.  X  /\  ( F `  j
)  e.  X )  ->  ( ( F `
 m ) D ( F `  j
) )  =  ( ( F `  j
) D ( F `
 m ) ) )
1211fveq2d 5545 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  ( F `  m )  e.  X  /\  ( F `  j
)  e.  X )  ->  (  _I  `  ( ( F `  m ) D ( F `  j ) ) )  =  (  _I  `  ( ( F `  j ) D ( F `  m ) ) ) )
13 simp1 955 . . . . . . . . . . 11  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  D  e.  ( * Met `  X
) )
14 simp2l 981 . . . . . . . . . . 11  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( F `  k )  e.  X
)
15 simp3l 983 . . . . . . . . . . 11  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( F `  j )  e.  X
)
16 xmetcl 17912 . . . . . . . . . . 11  |-  ( ( D  e.  ( * Met `  X )  /\  ( F `  k )  e.  X  /\  ( F `  j
)  e.  X )  ->  ( ( F `
 k ) D ( F `  j
) )  e.  RR* )
1713, 14, 15, 16syl3anc 1182 . . . . . . . . . 10  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( ( F `  k ) D ( F `  j ) )  e. 
RR* )
18 simp2r 982 . . . . . . . . . . 11  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( F `  m )  e.  X
)
19 xmetcl 17912 . . . . . . . . . . 11  |-  ( ( D  e.  ( * Met `  X )  /\  ( F `  j )  e.  X  /\  ( F `  m
)  e.  X )  ->  ( ( F `
 j ) D ( F `  m
) )  e.  RR* )
2013, 15, 18, 19syl3anc 1182 . . . . . . . . . 10  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( ( F `  j ) D ( F `  m ) )  e. 
RR* )
21 simp3r 984 . . . . . . . . . . . 12  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  x  e.  RR )
2221rehalfcld 9974 . . . . . . . . . . 11  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( x  /  2 )  e.  RR )
2322rexrd 8897 . . . . . . . . . 10  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( x  /  2 )  e. 
RR* )
24 xlt2add 10596 . . . . . . . . . 10  |-  ( ( ( ( ( F `
 k ) D ( F `  j
) )  e.  RR*  /\  ( ( F `  j ) D ( F `  m ) )  e.  RR* )  /\  ( ( x  / 
2 )  e.  RR*  /\  ( x  /  2
)  e.  RR* )
)  ->  ( (
( ( F `  k ) D ( F `  j ) )  <  ( x  /  2 )  /\  ( ( F `  j ) D ( F `  m ) )  <  ( x  /  2 ) )  ->  ( ( ( F `  k ) D ( F `  j ) ) + e ( ( F `
 j ) D ( F `  m
) ) )  < 
( ( x  / 
2 ) + e
( x  /  2
) ) ) )
2517, 20, 23, 23, 24syl22anc 1183 . . . . . . . . 9  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( (
( ( F `  k ) D ( F `  j ) )  <  ( x  /  2 )  /\  ( ( F `  j ) D ( F `  m ) )  <  ( x  /  2 ) )  ->  ( ( ( F `  k ) D ( F `  j ) ) + e ( ( F `
 j ) D ( F `  m
) ) )  < 
( ( x  / 
2 ) + e
( x  /  2
) ) ) )
26 rexadd 10575 . . . . . . . . . . . . 13  |-  ( ( ( x  /  2
)  e.  RR  /\  ( x  /  2
)  e.  RR )  ->  ( ( x  /  2 ) + e ( x  / 
2 ) )  =  ( ( x  / 
2 )  +  ( x  /  2 ) ) )
2722, 22, 26syl2anc 642 . . . . . . . . . . . 12  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( (
x  /  2 ) + e ( x  /  2 ) )  =  ( ( x  /  2 )  +  ( x  /  2
) ) )
2821recnd 8877 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  x  e.  CC )
29282halvesd 9973 . . . . . . . . . . . 12  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( (
x  /  2 )  +  ( x  / 
2 ) )  =  x )
3027, 29eqtrd 2328 . . . . . . . . . . 11  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( (
x  /  2 ) + e ( x  /  2 ) )  =  x )
3130breq2d 4051 . . . . . . . . . 10  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( (
( ( F `  k ) D ( F `  j ) ) + e ( ( F `  j
) D ( F `
 m ) ) )  <  ( ( x  /  2 ) + e ( x  /  2 ) )  <-> 
( ( ( F `
 k ) D ( F `  j
) ) + e
( ( F `  j ) D ( F `  m ) ) )  <  x
) )
32 xmettri 17931 . . . . . . . . . . . 12  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X  /\  ( F `
 j )  e.  X ) )  -> 
( ( F `  k ) D ( F `  m ) )  <_  ( (
( F `  k
) D ( F `
 j ) ) + e ( ( F `  j ) D ( F `  m ) ) ) )
3313, 14, 18, 15, 32syl13anc 1184 . . . . . . . . . . 11  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( ( F `  k ) D ( F `  m ) )  <_ 
( ( ( F `
 k ) D ( F `  j
) ) + e
( ( F `  j ) D ( F `  m ) ) ) )
34 xmetcl 17912 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( * Met `  X )  /\  ( F `  k )  e.  X  /\  ( F `  m
)  e.  X )  ->  ( ( F `
 k ) D ( F `  m
) )  e.  RR* )
3513, 14, 18, 34syl3anc 1182 . . . . . . . . . . . 12  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( ( F `  k ) D ( F `  m ) )  e. 
RR* )
3617, 20xaddcld 10637 . . . . . . . . . . . 12  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( (
( F `  k
) D ( F `
 j ) ) + e ( ( F `  j ) D ( F `  m ) ) )  e.  RR* )
3721rexrd 8897 . . . . . . . . . . . 12  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  x  e.  RR* )
38 xrlelttr 10503 . . . . . . . . . . . 12  |-  ( ( ( ( F `  k ) D ( F `  m ) )  e.  RR*  /\  (
( ( F `  k ) D ( F `  j ) ) + e ( ( F `  j
) D ( F `
 m ) ) )  e.  RR*  /\  x  e.  RR* )  ->  (
( ( ( F `
 k ) D ( F `  m
) )  <_  (
( ( F `  k ) D ( F `  j ) ) + e ( ( F `  j
) D ( F `
 m ) ) )  /\  ( ( ( F `  k
) D ( F `
 j ) ) + e ( ( F `  j ) D ( F `  m ) ) )  <  x )  -> 
( ( F `  k ) D ( F `  m ) )  <  x ) )
3935, 36, 37, 38syl3anc 1182 . . . . . . . . . . 11  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( (
( ( F `  k ) D ( F `  m ) )  <_  ( (
( F `  k
) D ( F `
 j ) ) + e ( ( F `  j ) D ( F `  m ) ) )  /\  ( ( ( F `  k ) D ( F `  j ) ) + e ( ( F `
 j ) D ( F `  m
) ) )  < 
x )  ->  (
( F `  k
) D ( F `
 m ) )  <  x ) )
4033, 39mpand 656 . . . . . . . . . 10  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( (
( ( F `  k ) D ( F `  j ) ) + e ( ( F `  j
) D ( F `
 m ) ) )  <  x  -> 
( ( F `  k ) D ( F `  m ) )  <  x ) )
4131, 40sylbid 206 . . . . . . . . 9  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( (
( ( F `  k ) D ( F `  j ) ) + e ( ( F `  j
) D ( F `
 m ) ) )  <  ( ( x  /  2 ) + e ( x  /  2 ) )  ->  ( ( F `
 k ) D ( F `  m
) )  <  x
) )
4225, 41syld 40 . . . . . . . 8  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( (
( ( F `  k ) D ( F `  j ) )  <  ( x  /  2 )  /\  ( ( F `  j ) D ( F `  m ) )  <  ( x  /  2 ) )  ->  ( ( F `
 k ) D ( F `  m
) )  <  x
) )
43 ovex 5899 . . . . . . . . . . 11  |-  ( ( F `  k ) D ( F `  j ) )  e. 
_V
44 fvi 5595 . . . . . . . . . . 11  |-  ( ( ( F `  k
) D ( F `
 j ) )  e.  _V  ->  (  _I  `  ( ( F `
 k ) D ( F `  j
) ) )  =  ( ( F `  k ) D ( F `  j ) ) )
4543, 44ax-mp 8 . . . . . . . . . 10  |-  (  _I 
`  ( ( F `
 k ) D ( F `  j
) ) )  =  ( ( F `  k ) D ( F `  j ) )
4645breq1i 4046 . . . . . . . . 9  |-  ( (  _I  `  ( ( F `  k ) D ( F `  j ) ) )  <  ( x  / 
2 )  <->  ( ( F `  k ) D ( F `  j ) )  < 
( x  /  2
) )
47 ovex 5899 . . . . . . . . . . 11  |-  ( ( F `  j ) D ( F `  m ) )  e. 
_V
48 fvi 5595 . . . . . . . . . . 11  |-  ( ( ( F `  j
) D ( F `
 m ) )  e.  _V  ->  (  _I  `  ( ( F `
 j ) D ( F `  m
) ) )  =  ( ( F `  j ) D ( F `  m ) ) )
4947, 48ax-mp 8 . . . . . . . . . 10  |-  (  _I 
`  ( ( F `
 j ) D ( F `  m
) ) )  =  ( ( F `  j ) D ( F `  m ) )
5049breq1i 4046 . . . . . . . . 9  |-  ( (  _I  `  ( ( F `  j ) D ( F `  m ) ) )  <  ( x  / 
2 )  <->  ( ( F `  j ) D ( F `  m ) )  < 
( x  /  2
) )
5146, 50anbi12i 678 . . . . . . . 8  |-  ( ( (  _I  `  (
( F `  k
) D ( F `
 j ) ) )  <  ( x  /  2 )  /\  (  _I  `  ( ( F `  j ) D ( F `  m ) ) )  <  ( x  / 
2 ) )  <->  ( (
( F `  k
) D ( F `
 j ) )  <  ( x  / 
2 )  /\  (
( F `  j
) D ( F `
 m ) )  <  ( x  / 
2 ) ) )
52 ovex 5899 . . . . . . . . . 10  |-  ( ( F `  k ) D ( F `  m ) )  e. 
_V
53 fvi 5595 . . . . . . . . . 10  |-  ( ( ( F `  k
) D ( F `
 m ) )  e.  _V  ->  (  _I  `  ( ( F `
 k ) D ( F `  m
) ) )  =  ( ( F `  k ) D ( F `  m ) ) )
5452, 53ax-mp 8 . . . . . . . . 9  |-  (  _I 
`  ( ( F `
 k ) D ( F `  m
) ) )  =  ( ( F `  k ) D ( F `  m ) )
5554breq1i 4046 . . . . . . . 8  |-  ( (  _I  `  ( ( F `  k ) D ( F `  m ) ) )  <  x  <->  ( ( F `  k ) D ( F `  m ) )  < 
x )
5642, 51, 553imtr4g 261 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 m )  e.  X )  /\  (
( F `  j
)  e.  X  /\  x  e.  RR )
)  ->  ( (
(  _I  `  (
( F `  k
) D ( F `
 j ) ) )  <  ( x  /  2 )  /\  (  _I  `  ( ( F `  j ) D ( F `  m ) ) )  <  ( x  / 
2 ) )  -> 
(  _I  `  (
( F `  k
) D ( F `
 m ) ) )  <  x ) )
575, 6, 7, 8, 10, 12, 56cau3lem 11854 . . . . . 6  |-  ( D  e.  ( * Met `  X )  ->  ( A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( k  e. 
dom  F  /\  ( F `  k )  e.  X )  /\  (  _I  `  ( ( F `
 k ) D ( F `  j
) ) )  < 
x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( k  e. 
dom  F  /\  ( F `  k )  e.  X )  /\  A. m  e.  ( ZZ>= `  k ) (  _I 
`  ( ( F `
 k ) D ( F `  m
) ) )  < 
x ) ) )
584, 57syl 15 . . . . 5  |-  ( (
ph  /\  F  e.  ( X  ^pm  CC ) )  ->  ( A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( k  e. 
dom  F  /\  ( F `  k )  e.  X )  /\  (  _I  `  ( ( F `
 k ) D ( F `  j
) ) )  < 
x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( k  e. 
dom  F  /\  ( F `  k )  e.  X )  /\  A. m  e.  ( ZZ>= `  k ) (  _I 
`  ( ( F `
 k ) D ( F `  m
) ) )  < 
x ) ) )
5945breq1i 4046 . . . . . . . . . 10  |-  ( (  _I  `  ( ( F `  k ) D ( F `  j ) ) )  <  x  <->  ( ( F `  k ) D ( F `  j ) )  < 
x )
6059anbi2i 675 . . . . . . . . 9  |-  ( ( ( k  e.  dom  F  /\  ( F `  k )  e.  X
)  /\  (  _I  `  ( ( F `  k ) D ( F `  j ) ) )  <  x
)  <->  ( ( k  e.  dom  F  /\  ( F `  k )  e.  X )  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) )
61 df-3an 936 . . . . . . . . 9  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  <-> 
( ( k  e. 
dom  F  /\  ( F `  k )  e.  X )  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) )
6260, 61bitr4i 243 . . . . . . . 8  |-  ( ( ( k  e.  dom  F  /\  ( F `  k )  e.  X
)  /\  (  _I  `  ( ( F `  k ) D ( F `  j ) ) )  <  x
)  <->  ( k  e. 
dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) )
6362ralbii 2580 . . . . . . 7  |-  ( A. k  e.  ( ZZ>= `  j ) ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X )  /\  (  _I  `  ( ( F `  k ) D ( F `  j ) ) )  <  x
)  <->  A. k  e.  (
ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) )
6463rexbii 2581 . . . . . 6  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X )  /\  (  _I  `  ( ( F `  k ) D ( F `  j ) ) )  <  x
)  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) )
6564ralbii 2580 . . . . 5  |-  ( A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( k  e. 
dom  F  /\  ( F `  k )  e.  X )  /\  (  _I  `  ( ( F `
 k ) D ( F `  j
) ) )  < 
x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) )
6655ralbii 2580 . . . . . . . . . 10  |-  ( A. m  e.  ( ZZ>= `  k ) (  _I 
`  ( ( F `
 k ) D ( F `  m
) ) )  < 
x  <->  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x )
6766anbi2i 675 . . . . . . . . 9  |-  ( ( ( k  e.  dom  F  /\  ( F `  k )  e.  X
)  /\  A. m  e.  ( ZZ>= `  k )
(  _I  `  (
( F `  k
) D ( F `
 m ) ) )  <  x )  <-> 
( ( k  e. 
dom  F  /\  ( F `  k )  e.  X )  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x ) )
68 df-3an 936 . . . . . . . . 9  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x )  <->  ( (
k  e.  dom  F  /\  ( F `  k
)  e.  X )  /\  A. m  e.  ( ZZ>= `  k )
( ( F `  k ) D ( F `  m ) )  <  x ) )
6967, 68bitr4i 243 . . . . . . . 8  |-  ( ( ( k  e.  dom  F  /\  ( F `  k )  e.  X
)  /\  A. m  e.  ( ZZ>= `  k )
(  _I  `  (
( F `  k
) D ( F `
 m ) ) )  <  x )  <-> 
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x ) )
7069ralbii 2580 . . . . . . 7  |-  ( A. k  e.  ( ZZ>= `  j ) ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X )  /\  A. m  e.  ( ZZ>= `  k )
(  _I  `  (
( F `  k
) D ( F `
 m ) ) )  <  x )  <->  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x ) )
7170rexbii 2581 . . . . . 6  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X )  /\  A. m  e.  ( ZZ>= `  k )
(  _I  `  (
( F `  k
) D ( F `
 m ) ) )  <  x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x ) )
7271ralbii 2580 . . . . 5  |-  ( A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( k  e. 
dom  F  /\  ( F `  k )  e.  X )  /\  A. m  e.  ( ZZ>= `  k ) (  _I 
`  ( ( F `
 k ) D ( F `  m
) ) )  < 
x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x ) )
7358, 65, 723bitr3g 278 . . . 4  |-  ( (
ph  /\  F  e.  ( X  ^pm  CC ) )  ->  ( A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x ) ) )
74 iscau3.4 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
7574adantr 451 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X  ^pm  CC ) )  ->  M  e.  ZZ )
76 iscau3.2 . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
7776rexuz3 11848 . . . . . 6  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x ) ) )
7875, 77syl 15 . . . . 5  |-  ( (
ph  /\  F  e.  ( X  ^pm  CC ) )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x ) ) )
7978ralbidv 2576 . . . 4  |-  ( (
ph  /\  F  e.  ( X  ^pm  CC ) )  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x ) ) )
8073, 79bitr4d 247 . . 3  |-  ( (
ph  /\  F  e.  ( X  ^pm  CC ) )  ->  ( A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 m ) )  <  x ) ) )
8180pm5.32da 622 . 2  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) )  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x ) ) ) )
823, 81bitrd 244 1  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. m  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  m ) )  < 
x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   _Vcvv 2801   class class class wbr 4039    _I cid 4320   dom cdm 4705   ` cfv 5271  (class class class)co 5874    ^pm cpm 6789   CCcc 8751   RRcr 8752    + caddc 8756   RR*cxr 8882    < clt 8883    <_ cle 8884    / cdiv 9439   2c2 9811   ZZcz 10040   ZZ>=cuz 10246   RR+crp 10370   + ecxad 10466   * Metcxmt 16385   Caucca 18695
This theorem is referenced by:  iscau4  18721  caucfil  18725  cmetcaulem  18730  heibor1lem  26636
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-2 9820  df-z 10041  df-uz 10247  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmet 16389  df-bl 16391  df-cau 18698
  Copyright terms: Public domain W3C validator