MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscauf Unicode version

Theorem iscauf 19105
Description: Express the property " F is a Cauchy sequence of metric  D " presupposing  F is a function. (Contributed by NM, 24-Jul-2007.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypotheses
Ref Expression
iscau3.2  |-  Z  =  ( ZZ>= `  M )
iscau3.3  |-  ( ph  ->  D  e.  ( * Met `  X ) )
iscau3.4  |-  ( ph  ->  M  e.  ZZ )
iscau4.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
iscau4.6  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  j )  =  B )
iscauf.7  |-  ( ph  ->  F : Z --> X )
Assertion
Ref Expression
iscauf  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B D A )  <  x ) )
Distinct variable groups:    j, k, x, D    j, F, k, x    ph, j, k, x   
j, X, k, x   
j, M    j, Z, k, x
Allowed substitution hints:    A( x, j, k)    B( x, j, k)    M( x, k)

Proof of Theorem iscauf
StepHypRef Expression
1 iscau3.3 . . . . . 6  |-  ( ph  ->  D  e.  ( * Met `  X ) )
2 elfvdm 5698 . . . . . 6  |-  ( D  e.  ( * Met `  X )  ->  X  e.  dom  * Met )
31, 2syl 16 . . . . 5  |-  ( ph  ->  X  e.  dom  * Met )
4 cnex 9005 . . . . 5  |-  CC  e.  _V
53, 4jctir 525 . . . 4  |-  ( ph  ->  ( X  e.  dom  * Met  /\  CC  e.  _V ) )
6 iscauf.7 . . . . 5  |-  ( ph  ->  F : Z --> X )
7 iscau3.2 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
8 uzssz 10438 . . . . . . 7  |-  ( ZZ>= `  M )  C_  ZZ
9 zsscn 10223 . . . . . . 7  |-  ZZ  C_  CC
108, 9sstri 3301 . . . . . 6  |-  ( ZZ>= `  M )  C_  CC
117, 10eqsstri 3322 . . . . 5  |-  Z  C_  CC
126, 11jctir 525 . . . 4  |-  ( ph  ->  ( F : Z --> X  /\  Z  C_  CC ) )
13 elpm2r 6971 . . . 4  |-  ( ( ( X  e.  dom  * Met  /\  CC  e.  _V )  /\  ( F : Z --> X  /\  Z  C_  CC ) )  ->  F  e.  ( X  ^pm  CC )
)
145, 12, 13syl2anc 643 . . 3  |-  ( ph  ->  F  e.  ( X 
^pm  CC ) )
1514biantrurd 495 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  <  x )  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  <  x ) ) ) )
161adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  D  e.  ( * Met `  X
) )
17 iscau4.6 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  j )  =  B )
1817adantrr 698 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  ( F `  j )  =  B )
196adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  F : Z --> X )
20 simprl 733 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  j  e.  Z )
2119, 20ffvelrnd 5811 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  ( F `  j )  e.  X )
2218, 21eqeltrrd 2463 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  B  e.  X )
237uztrn2 10436 . . . . . . . . . . 11  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
24 iscau4.5 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
2523, 24sylan2 461 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  ( F `  k )  =  A )
26 ffvelrn 5808 . . . . . . . . . . 11  |-  ( ( F : Z --> X  /\  k  e.  Z )  ->  ( F `  k
)  e.  X )
276, 23, 26syl2an 464 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  ( F `  k )  e.  X )
2825, 27eqeltrrd 2463 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  A  e.  X )
29 xmetsym 18287 . . . . . . . . 9  |-  ( ( D  e.  ( * Met `  X )  /\  B  e.  X  /\  A  e.  X
)  ->  ( B D A )  =  ( A D B ) )
3016, 22, 28, 29syl3anc 1184 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  ( B D A )  =  ( A D B ) )
3130breq1d 4164 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( B D A )  <  x  <->  ( A D B )  <  x
) )
32 fdm 5536 . . . . . . . . . . . . 13  |-  ( F : Z --> X  ->  dom  F  =  Z )
3332eleq2d 2455 . . . . . . . . . . . 12  |-  ( F : Z --> X  -> 
( k  e.  dom  F  <-> 
k  e.  Z ) )
3433biimpar 472 . . . . . . . . . . 11  |-  ( ( F : Z --> X  /\  k  e.  Z )  ->  k  e.  dom  F
)
356, 23, 34syl2an 464 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  k  e.  dom  F )
3635, 28jca 519 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
k  e.  dom  F  /\  A  e.  X
) )
3736biantrurd 495 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( A D B )  <  x  <->  ( (
k  e.  dom  F  /\  A  e.  X
)  /\  ( A D B )  <  x
) ) )
38 df-3an 938 . . . . . . . 8  |-  ( ( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  <  x )  <-> 
( ( k  e. 
dom  F  /\  A  e.  X )  /\  ( A D B )  < 
x ) )
3937, 38syl6bbr 255 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( A D B )  <  x  <->  ( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  < 
x ) ) )
4031, 39bitrd 245 . . . . . 6  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( B D A )  <  x  <->  ( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  < 
x ) ) )
4140anassrs 630 . . . . 5  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( B D A )  < 
x  <->  ( k  e. 
dom  F  /\  A  e.  X  /\  ( A D B )  < 
x ) ) )
4241ralbidva 2666 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( B D A )  <  x  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  <  x ) ) )
4342rexbidva 2667 . . 3  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B D A )  <  x  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  <  x ) ) )
4443ralbidv 2670 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( B D A )  <  x  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  <  x ) ) )
45 iscau3.4 . . 3  |-  ( ph  ->  M  e.  ZZ )
467, 1, 45, 24, 17iscau4 19104 . 2  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  <  x ) ) ) )
4715, 44, 463bitr4rd 278 1  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B D A )  <  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2650   E.wrex 2651   _Vcvv 2900    C_ wss 3264   class class class wbr 4154   dom cdm 4819   -->wf 5391   ` cfv 5395  (class class class)co 6021    ^pm cpm 6956   CCcc 8922    < clt 9054   ZZcz 10215   ZZ>=cuz 10421   RR+crp 10545   * Metcxmt 16613   Caucca 19078
This theorem is referenced by:  iscmet3lem1  19116  causs  19123  caubl  19132  minvecolem3  22227  h2hcau  22331  geomcau  26157  caushft  26159  rrncmslem  26233
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-po 4445  df-so 4446  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-riota 6486  df-er 6842  df-map 6957  df-pm 6958  df-en 7047  df-dom 7048  df-sdom 7049  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-2 9991  df-z 10216  df-uz 10422  df-rp 10546  df-xneg 10643  df-xadd 10644  df-xmet 16620  df-bl 16622  df-cau 19081
  Copyright terms: Public domain W3C validator