MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscauf Structured version   Unicode version

Theorem iscauf 19225
Description: Express the property " F is a Cauchy sequence of metric  D " presupposing  F is a function. (Contributed by NM, 24-Jul-2007.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypotheses
Ref Expression
iscau3.2  |-  Z  =  ( ZZ>= `  M )
iscau3.3  |-  ( ph  ->  D  e.  ( * Met `  X ) )
iscau3.4  |-  ( ph  ->  M  e.  ZZ )
iscau4.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
iscau4.6  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  j )  =  B )
iscauf.7  |-  ( ph  ->  F : Z --> X )
Assertion
Ref Expression
iscauf  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B D A )  <  x ) )
Distinct variable groups:    j, k, x, D    j, F, k, x    ph, j, k, x   
j, X, k, x   
j, M    j, Z, k, x
Allowed substitution hints:    A( x, j, k)    B( x, j, k)    M( x, k)

Proof of Theorem iscauf
StepHypRef Expression
1 iscau3.3 . . . . . 6  |-  ( ph  ->  D  e.  ( * Met `  X ) )
2 elfvdm 5749 . . . . . 6  |-  ( D  e.  ( * Met `  X )  ->  X  e.  dom  * Met )
31, 2syl 16 . . . . 5  |-  ( ph  ->  X  e.  dom  * Met )
4 cnex 9063 . . . . 5  |-  CC  e.  _V
53, 4jctir 525 . . . 4  |-  ( ph  ->  ( X  e.  dom  * Met  /\  CC  e.  _V ) )
6 iscauf.7 . . . . 5  |-  ( ph  ->  F : Z --> X )
7 iscau3.2 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
8 uzssz 10497 . . . . . . 7  |-  ( ZZ>= `  M )  C_  ZZ
9 zsscn 10282 . . . . . . 7  |-  ZZ  C_  CC
108, 9sstri 3349 . . . . . 6  |-  ( ZZ>= `  M )  C_  CC
117, 10eqsstri 3370 . . . . 5  |-  Z  C_  CC
126, 11jctir 525 . . . 4  |-  ( ph  ->  ( F : Z --> X  /\  Z  C_  CC ) )
13 elpm2r 7026 . . . 4  |-  ( ( ( X  e.  dom  * Met  /\  CC  e.  _V )  /\  ( F : Z --> X  /\  Z  C_  CC ) )  ->  F  e.  ( X  ^pm  CC )
)
145, 12, 13syl2anc 643 . . 3  |-  ( ph  ->  F  e.  ( X 
^pm  CC ) )
1514biantrurd 495 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  <  x )  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  <  x ) ) ) )
161adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  D  e.  ( * Met `  X
) )
17 iscau4.6 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  j )  =  B )
1817adantrr 698 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  ( F `  j )  =  B )
196adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  F : Z --> X )
20 simprl 733 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  j  e.  Z )
2119, 20ffvelrnd 5863 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  ( F `  j )  e.  X )
2218, 21eqeltrrd 2510 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  B  e.  X )
237uztrn2 10495 . . . . . . . . . . 11  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
24 iscau4.5 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  A )
2523, 24sylan2 461 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  ( F `  k )  =  A )
26 ffvelrn 5860 . . . . . . . . . . 11  |-  ( ( F : Z --> X  /\  k  e.  Z )  ->  ( F `  k
)  e.  X )
276, 23, 26syl2an 464 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  ( F `  k )  e.  X )
2825, 27eqeltrrd 2510 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  A  e.  X )
29 xmetsym 18369 . . . . . . . . 9  |-  ( ( D  e.  ( * Met `  X )  /\  B  e.  X  /\  A  e.  X
)  ->  ( B D A )  =  ( A D B ) )
3016, 22, 28, 29syl3anc 1184 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  ( B D A )  =  ( A D B ) )
3130breq1d 4214 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( B D A )  <  x  <->  ( A D B )  <  x
) )
32 fdm 5587 . . . . . . . . . . . . 13  |-  ( F : Z --> X  ->  dom  F  =  Z )
3332eleq2d 2502 . . . . . . . . . . . 12  |-  ( F : Z --> X  -> 
( k  e.  dom  F  <-> 
k  e.  Z ) )
3433biimpar 472 . . . . . . . . . . 11  |-  ( ( F : Z --> X  /\  k  e.  Z )  ->  k  e.  dom  F
)
356, 23, 34syl2an 464 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  k  e.  dom  F )
3635, 28jca 519 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
k  e.  dom  F  /\  A  e.  X
) )
3736biantrurd 495 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( A D B )  <  x  <->  ( (
k  e.  dom  F  /\  A  e.  X
)  /\  ( A D B )  <  x
) ) )
38 df-3an 938 . . . . . . . 8  |-  ( ( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  <  x )  <-> 
( ( k  e. 
dom  F  /\  A  e.  X )  /\  ( A D B )  < 
x ) )
3937, 38syl6bbr 255 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( A D B )  <  x  <->  ( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  < 
x ) ) )
4031, 39bitrd 245 . . . . . 6  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( B D A )  <  x  <->  ( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  < 
x ) ) )
4140anassrs 630 . . . . 5  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( ( B D A )  < 
x  <->  ( k  e. 
dom  F  /\  A  e.  X  /\  ( A D B )  < 
x ) ) )
4241ralbidva 2713 . . . 4  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( B D A )  <  x  <->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  <  x ) ) )
4342rexbidva 2714 . . 3  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B D A )  <  x  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  <  x ) ) )
4443ralbidv 2717 . 2  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( B D A )  <  x  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  <  x ) ) )
45 iscau3.4 . . 3  |-  ( ph  ->  M  e.  ZZ )
467, 1, 45, 24, 17iscau4 19224 . 2  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  A  e.  X  /\  ( A D B )  <  x ) ) ) )
4715, 44, 463bitr4rd 278 1  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( B D A )  <  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   _Vcvv 2948    C_ wss 3312   class class class wbr 4204   dom cdm 4870   -->wf 5442   ` cfv 5446  (class class class)co 6073    ^pm cpm 7011   CCcc 8980    < clt 9112   ZZcz 10274   ZZ>=cuz 10480   RR+crp 10604   * Metcxmt 16678   Caucca 19198
This theorem is referenced by:  iscmet3lem1  19236  causs  19243  caubl  19252  minvecolem3  22370  h2hcau  22474  geomcau  26456  caushft  26458  rrncmslem  26532
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-er 6897  df-map 7012  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-2 10050  df-z 10275  df-uz 10481  df-rp 10605  df-xneg 10702  df-xadd 10703  df-psmet 16686  df-xmet 16687  df-bl 16689  df-cau 19201
  Copyright terms: Public domain W3C validator