MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscfil2 Unicode version

Theorem iscfil2 18708
Description: The property of being a Cauchy filter. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
iscfil2  |-  ( D  e.  ( * Met `  X )  ->  ( F  e.  (CauFil `  D
)  <->  ( F  e.  ( Fil `  X
)  /\  A. x  e.  RR+  E. y  e.  F  A. z  e.  y  A. w  e.  y  ( z D w )  <  x
) ) )
Distinct variable groups:    x, w, y, z, F    w, X, x, y, z    w, D, x, y, z

Proof of Theorem iscfil2
StepHypRef Expression
1 iscfil 18707 . 2  |-  ( D  e.  ( * Met `  X )  ->  ( F  e.  (CauFil `  D
)  <->  ( F  e.  ( Fil `  X
)  /\  A. x  e.  RR+  E. y  e.  F  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) ) )
2 xmetf 17910 . . . . . . . . 9  |-  ( D  e.  ( * Met `  X )  ->  D : ( X  X.  X ) --> RR* )
32ad3antrrr 710 . . . . . . . 8  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  ( Fil `  X ) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  D : ( X  X.  X ) --> RR* )
4 ffun 5407 . . . . . . . 8  |-  ( D : ( X  X.  X ) --> RR*  ->  Fun 
D )
53, 4syl 15 . . . . . . 7  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  ( Fil `  X ) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  Fun  D )
6 simplr 731 . . . . . . . . . 10  |-  ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  ( Fil `  X ) )  /\  x  e.  RR+ )  ->  F  e.  ( Fil `  X
) )
7 filelss 17563 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  X )  /\  y  e.  F )  ->  y  C_  X )
86, 7sylan 457 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  ( Fil `  X ) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  y  C_  X )
9 xpss12 4808 . . . . . . . . 9  |-  ( ( y  C_  X  /\  y  C_  X )  -> 
( y  X.  y
)  C_  ( X  X.  X ) )
108, 8, 9syl2anc 642 . . . . . . . 8  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  ( Fil `  X ) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  (
y  X.  y ) 
C_  ( X  X.  X ) )
11 fdm 5409 . . . . . . . . 9  |-  ( D : ( X  X.  X ) --> RR*  ->  dom 
D  =  ( X  X.  X ) )
123, 11syl 15 . . . . . . . 8  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  ( Fil `  X ) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  dom  D  =  ( X  X.  X ) )
1310, 12sseqtr4d 3228 . . . . . . 7  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  ( Fil `  X ) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  (
y  X.  y ) 
C_  dom  D )
14 funimassov 6013 . . . . . . 7  |-  ( ( Fun  D  /\  (
y  X.  y ) 
C_  dom  D )  ->  ( ( D "
( y  X.  y
) )  C_  (
0 [,) x )  <->  A. z  e.  y  A. w  e.  y 
( z D w )  e.  ( 0 [,) x ) ) )
155, 13, 14syl2anc 642 . . . . . 6  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  ( Fil `  X ) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  (
( D " (
y  X.  y ) )  C_  ( 0 [,) x )  <->  A. z  e.  y  A. w  e.  y  ( z D w )  e.  ( 0 [,) x
) ) )
16 0xr 8894 . . . . . . . . 9  |-  0  e.  RR*
1716a1i 10 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  0  e.  RR* )
18 simpllr 735 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  x  e.  RR+ )
1918rpxrd 10407 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  x  e.  RR* )
20 simplll 734 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  ( Fil `  X ) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  D  e.  ( * Met `  X
) )
2120adantr 451 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  D  e.  ( * Met `  X
) )
228sselda 3193 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  z  e.  y )  ->  z  e.  X )
2322adantrr 697 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  z  e.  X )
248sselda 3193 . . . . . . . . . 10  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  w  e.  y )  ->  w  e.  X )
2524adantrl 696 . . . . . . . . 9  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  w  e.  X )
26 xmetcl 17912 . . . . . . . . 9  |-  ( ( D  e.  ( * Met `  X )  /\  z  e.  X  /\  w  e.  X
)  ->  ( z D w )  e. 
RR* )
2721, 23, 25, 26syl3anc 1182 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  ( z D w )  e. 
RR* )
28 xmetge0 17925 . . . . . . . . 9  |-  ( ( D  e.  ( * Met `  X )  /\  z  e.  X  /\  w  e.  X
)  ->  0  <_  ( z D w ) )
2921, 23, 25, 28syl3anc 1182 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  0  <_  ( z D w ) )
30 elico1 10715 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  x  e.  RR* )  ->  (
( z D w )  e.  ( 0 [,) x )  <->  ( (
z D w )  e.  RR*  /\  0  <_  ( z D w )  /\  ( z D w )  < 
x ) ) )
31 df-3an 936 . . . . . . . . . 10  |-  ( ( ( z D w )  e.  RR*  /\  0  <_  ( z D w )  /\  ( z D w )  < 
x )  <->  ( (
( z D w )  e.  RR*  /\  0  <_  ( z D w ) )  /\  (
z D w )  <  x ) )
3230, 31syl6bb 252 . . . . . . . . 9  |-  ( ( 0  e.  RR*  /\  x  e.  RR* )  ->  (
( z D w )  e.  ( 0 [,) x )  <->  ( (
( z D w )  e.  RR*  /\  0  <_  ( z D w ) )  /\  (
z D w )  <  x ) ) )
3332baibd 875 . . . . . . . 8  |-  ( ( ( 0  e.  RR*  /\  x  e.  RR* )  /\  ( ( z D w )  e.  RR*  /\  0  <_  ( z D w ) ) )  ->  ( (
z D w )  e.  ( 0 [,) x )  <->  ( z D w )  < 
x ) )
3417, 19, 27, 29, 33syl22anc 1183 . . . . . . 7  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  RR+ )  /\  y  e.  F )  /\  (
z  e.  y  /\  w  e.  y )
)  ->  ( (
z D w )  e.  ( 0 [,) x )  <->  ( z D w )  < 
x ) )
35342ralbidva 2596 . . . . . 6  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  ( Fil `  X ) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  ( A. z  e.  y  A. w  e.  y 
( z D w )  e.  ( 0 [,) x )  <->  A. z  e.  y  A. w  e.  y  ( z D w )  < 
x ) )
3615, 35bitrd 244 . . . . 5  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  ( Fil `  X ) )  /\  x  e.  RR+ )  /\  y  e.  F )  ->  (
( D " (
y  X.  y ) )  C_  ( 0 [,) x )  <->  A. z  e.  y  A. w  e.  y  ( z D w )  < 
x ) )
3736rexbidva 2573 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  ( Fil `  X ) )  /\  x  e.  RR+ )  ->  ( E. y  e.  F  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) x )  <->  E. y  e.  F  A. z  e.  y  A. w  e.  y  ( z D w )  < 
x ) )
3837ralbidva 2572 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X ) )  ->  ( A. x  e.  RR+  E. y  e.  F  ( D " ( y  X.  y
) )  C_  (
0 [,) x )  <->  A. x  e.  RR+  E. y  e.  F  A. z  e.  y  A. w  e.  y  ( z D w )  < 
x ) )
3938pm5.32da 622 . 2  |-  ( D  e.  ( * Met `  X )  ->  (
( F  e.  ( Fil `  X )  /\  A. x  e.  RR+  E. y  e.  F  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) x ) )  <->  ( F  e.  ( Fil `  X
)  /\  A. x  e.  RR+  E. y  e.  F  A. z  e.  y  A. w  e.  y  ( z D w )  <  x
) ) )
401, 39bitrd 244 1  |-  ( D  e.  ( * Met `  X )  ->  ( F  e.  (CauFil `  D
)  <->  ( F  e.  ( Fil `  X
)  /\  A. x  e.  RR+  E. y  e.  F  A. z  e.  y  A. w  e.  y  ( z D w )  <  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557    C_ wss 3165   class class class wbr 4039    X. cxp 4703   dom cdm 4705   "cima 4708   Fun wfun 5265   -->wf 5267   ` cfv 5271  (class class class)co 5874   0cc0 8753   RR*cxr 8882    < clt 8883    <_ cle 8884   RR+crp 10370   [,)cico 10674   * Metcxmt 16385   Filcfil 17556  CauFilccfil 18694
This theorem is referenced by:  cfili  18710  fgcfil  18713  iscfil3  18715  cfilresi  18737  cfilres  18738
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-2 9820  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ico 10678  df-xmet 16389  df-fbas 17536  df-fil 17557  df-cfil 18697
  Copyright terms: Public domain W3C validator