MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscld Unicode version

Theorem iscld 16764
Description: The predicate " S is a closed set." (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
iscld.1  |-  X  = 
U. J
Assertion
Ref Expression
iscld  |-  ( J  e.  Top  ->  ( S  e.  ( Clsd `  J )  <->  ( S  C_  X  /\  ( X 
\  S )  e.  J ) ) )

Proof of Theorem iscld
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 iscld.1 . . . . 5  |-  X  = 
U. J
21cldval 16760 . . . 4  |-  ( J  e.  Top  ->  ( Clsd `  J )  =  { x  e.  ~P X  |  ( X  \  x )  e.  J } )
32eleq2d 2350 . . 3  |-  ( J  e.  Top  ->  ( S  e.  ( Clsd `  J )  <->  S  e.  { x  e.  ~P X  |  ( X  \  x )  e.  J } ) )
4 difeq2 3288 . . . . 5  |-  ( x  =  S  ->  ( X  \  x )  =  ( X  \  S
) )
54eleq1d 2349 . . . 4  |-  ( x  =  S  ->  (
( X  \  x
)  e.  J  <->  ( X  \  S )  e.  J
) )
65elrab 2923 . . 3  |-  ( S  e.  { x  e. 
~P X  |  ( X  \  x )  e.  J }  <->  ( S  e.  ~P X  /\  ( X  \  S )  e.  J ) )
73, 6syl6bb 252 . 2  |-  ( J  e.  Top  ->  ( S  e.  ( Clsd `  J )  <->  ( S  e.  ~P X  /\  ( X  \  S )  e.  J ) ) )
81topopn 16652 . . . 4  |-  ( J  e.  Top  ->  X  e.  J )
9 elpw2g 4174 . . . 4  |-  ( X  e.  J  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
108, 9syl 15 . . 3  |-  ( J  e.  Top  ->  ( S  e.  ~P X  <->  S 
C_  X ) )
1110anbi1d 685 . 2  |-  ( J  e.  Top  ->  (
( S  e.  ~P X  /\  ( X  \  S )  e.  J
)  <->  ( S  C_  X  /\  ( X  \  S )  e.  J
) ) )
127, 11bitrd 244 1  |-  ( J  e.  Top  ->  ( S  e.  ( Clsd `  J )  <->  ( S  C_  X  /\  ( X 
\  S )  e.  J ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   {crab 2547    \ cdif 3149    C_ wss 3152   ~Pcpw 3625   U.cuni 3827   ` cfv 5255   Topctop 16631   Clsdccld 16753
This theorem is referenced by:  iscld2  16765  cldss  16766  cldopn  16768  topcld  16772  discld  16826  indiscld  16828  restcld  16903  ordtcld1  16927  ordtcld2  16928  hauscmp  17134  txcld  17298  ptcld  17307  qtopcld  17404  opnsubg  17790  stoweidlem57  27806
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-top 16636  df-cld 16756
  Copyright terms: Public domain W3C validator