MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscld2 Unicode version

Theorem iscld2 17047
Description: A subset of the underlying set of a topology is closed iff its complement is open. (Contributed by NM, 4-Oct-2006.)
Hypothesis
Ref Expression
iscld.1  |-  X  = 
U. J
Assertion
Ref Expression
iscld2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( S  e.  (
Clsd `  J )  <->  ( X  \  S )  e.  J ) )

Proof of Theorem iscld2
StepHypRef Expression
1 iscld.1 . . 3  |-  X  = 
U. J
21iscld 17046 . 2  |-  ( J  e.  Top  ->  ( S  e.  ( Clsd `  J )  <->  ( S  C_  X  /\  ( X 
\  S )  e.  J ) ) )
32baibd 876 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( S  e.  (
Clsd `  J )  <->  ( X  \  S )  e.  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721    \ cdif 3277    C_ wss 3280   U.cuni 3975   ` cfv 5413   Topctop 16913   Clsdccld 17035
This theorem is referenced by:  isopn2  17051  0cld  17057  uncld  17060  isclo  17106  cnclima  17286  ist1-2  17365  hausdiag  17630  qtopcld  17698  ufildr  17916  blcld  18488  icccld  18754  iocmnfcld  18756  zcld  18797  recld2  18798  kelac2  27031  stoweidlem50  27666
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-iota 5377  df-fun 5415  df-fv 5421  df-top 16918  df-cld 17038
  Copyright terms: Public domain W3C validator