MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclo2 Structured version   Unicode version

Theorem isclo2 17154
Description: A set  A is clopen iff for every point  x in the space there is a neighborhood  y of  x which is either disjoint from  A or contained in  A. (Contributed by Mario Carneiro, 7-Jul-2015.)
Hypothesis
Ref Expression
isclo.1  |-  X  = 
U. J
Assertion
Ref Expression
isclo2  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( A  e.  ( J  i^i  ( Clsd `  J ) )  <->  A. x  e.  X  E. y  e.  J  ( x  e.  y  /\  A. z  e.  y  ( z  e.  A  ->  y  C_  A ) ) ) )
Distinct variable groups:    x, y,
z, A    x, J, y, z    x, X, y, z

Proof of Theorem isclo2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 isclo.1 . . 3  |-  X  = 
U. J
21isclo 17153 . 2  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( A  e.  ( J  i^i  ( Clsd `  J ) )  <->  A. x  e.  X  E. y  e.  J  ( x  e.  y  /\  A. z  e.  y  ( x  e.  A  <->  z  e.  A
) ) ) )
3 eleq1 2498 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
z  e.  A  <->  w  e.  A ) )
43bibi2d 311 . . . . . . . . . 10  |-  ( z  =  w  ->  (
( x  e.  A  <->  z  e.  A )  <->  ( x  e.  A  <->  w  e.  A
) ) )
54cbvralv 2934 . . . . . . . . 9  |-  ( A. z  e.  y  (
x  e.  A  <->  z  e.  A )  <->  A. w  e.  y  ( x  e.  A  <->  w  e.  A
) )
65anbi2i 677 . . . . . . . 8  |-  ( ( A. z  e.  y  ( x  e.  A  <->  z  e.  A )  /\  A. z  e.  y  ( x  e.  A  <->  z  e.  A ) )  <->  ( A. z  e.  y  (
x  e.  A  <->  z  e.  A )  /\  A. w  e.  y  (
x  e.  A  <->  w  e.  A ) ) )
7 pm4.24 626 . . . . . . . 8  |-  ( A. z  e.  y  (
x  e.  A  <->  z  e.  A )  <->  ( A. z  e.  y  (
x  e.  A  <->  z  e.  A )  /\  A. z  e.  y  (
x  e.  A  <->  z  e.  A ) ) )
8 raaanv 3738 . . . . . . . 8  |-  ( A. z  e.  y  A. w  e.  y  (
( x  e.  A  <->  z  e.  A )  /\  ( x  e.  A  <->  w  e.  A ) )  <-> 
( A. z  e.  y  ( x  e.  A  <->  z  e.  A
)  /\  A. w  e.  y  ( x  e.  A  <->  w  e.  A
) ) )
96, 7, 83bitr4i 270 . . . . . . 7  |-  ( A. z  e.  y  (
x  e.  A  <->  z  e.  A )  <->  A. z  e.  y  A. w  e.  y  ( (
x  e.  A  <->  z  e.  A )  /\  (
x  e.  A  <->  w  e.  A ) ) )
10 bibi1 319 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  <->  z  e.  A )  ->  (
( x  e.  A  <->  w  e.  A )  <->  ( z  e.  A  <->  w  e.  A
) ) )
1110biimpa 472 . . . . . . . . . . . 12  |-  ( ( ( x  e.  A  <->  z  e.  A )  /\  ( x  e.  A  <->  w  e.  A ) )  ->  ( z  e.  A  <->  w  e.  A
) )
1211biimpcd 217 . . . . . . . . . . 11  |-  ( z  e.  A  ->  (
( ( x  e.  A  <->  z  e.  A
)  /\  ( x  e.  A  <->  w  e.  A
) )  ->  w  e.  A ) )
1312ralimdv 2787 . . . . . . . . . 10  |-  ( z  e.  A  ->  ( A. w  e.  y 
( ( x  e.  A  <->  z  e.  A
)  /\  ( x  e.  A  <->  w  e.  A
) )  ->  A. w  e.  y  w  e.  A ) )
1413com12 30 . . . . . . . . 9  |-  ( A. w  e.  y  (
( x  e.  A  <->  z  e.  A )  /\  ( x  e.  A  <->  w  e.  A ) )  ->  ( z  e.  A  ->  A. w  e.  y  w  e.  A ) )
15 dfss3 3340 . . . . . . . . 9  |-  ( y 
C_  A  <->  A. w  e.  y  w  e.  A )
1614, 15syl6ibr 220 . . . . . . . 8  |-  ( A. w  e.  y  (
( x  e.  A  <->  z  e.  A )  /\  ( x  e.  A  <->  w  e.  A ) )  ->  ( z  e.  A  ->  y  C_  A ) )
1716ralimi 2783 . . . . . . 7  |-  ( A. z  e.  y  A. w  e.  y  (
( x  e.  A  <->  z  e.  A )  /\  ( x  e.  A  <->  w  e.  A ) )  ->  A. z  e.  y  ( z  e.  A  ->  y  C_  A )
)
189, 17sylbi 189 . . . . . 6  |-  ( A. z  e.  y  (
x  e.  A  <->  z  e.  A )  ->  A. z  e.  y  ( z  e.  A  ->  y  C_  A ) )
19 eleq1 2498 . . . . . . . . . . 11  |-  ( z  =  x  ->  (
z  e.  A  <->  x  e.  A ) )
2019imbi1d 310 . . . . . . . . . 10  |-  ( z  =  x  ->  (
( z  e.  A  ->  y  C_  A )  <->  ( x  e.  A  -> 
y  C_  A )
) )
2120rspcv 3050 . . . . . . . . 9  |-  ( x  e.  y  ->  ( A. z  e.  y 
( z  e.  A  ->  y  C_  A )  ->  ( x  e.  A  ->  y  C_  A )
) )
22 dfss3 3340 . . . . . . . . . . 11  |-  ( y 
C_  A  <->  A. z  e.  y  z  e.  A )
2322imbi2i 305 . . . . . . . . . 10  |-  ( ( x  e.  A  -> 
y  C_  A )  <->  ( x  e.  A  ->  A. z  e.  y 
z  e.  A ) )
24 r19.21v 2795 . . . . . . . . . 10  |-  ( A. z  e.  y  (
x  e.  A  -> 
z  e.  A )  <-> 
( x  e.  A  ->  A. z  e.  y  z  e.  A ) )
2523, 24bitr4i 245 . . . . . . . . 9  |-  ( ( x  e.  A  -> 
y  C_  A )  <->  A. z  e.  y  ( x  e.  A  -> 
z  e.  A ) )
2621, 25syl6ib 219 . . . . . . . 8  |-  ( x  e.  y  ->  ( A. z  e.  y 
( z  e.  A  ->  y  C_  A )  ->  A. z  e.  y  ( x  e.  A  ->  z  e.  A ) ) )
27 ssel 3344 . . . . . . . . . . 11  |-  ( y 
C_  A  ->  (
x  e.  y  ->  x  e.  A )
)
2827com12 30 . . . . . . . . . 10  |-  ( x  e.  y  ->  (
y  C_  A  ->  x  e.  A ) )
2928imim2d 51 . . . . . . . . 9  |-  ( x  e.  y  ->  (
( z  e.  A  ->  y  C_  A )  ->  ( z  e.  A  ->  x  e.  A ) ) )
3029ralimdv 2787 . . . . . . . 8  |-  ( x  e.  y  ->  ( A. z  e.  y 
( z  e.  A  ->  y  C_  A )  ->  A. z  e.  y  ( z  e.  A  ->  x  e.  A ) ) )
3126, 30jcad 521 . . . . . . 7  |-  ( x  e.  y  ->  ( A. z  e.  y 
( z  e.  A  ->  y  C_  A )  ->  ( A. z  e.  y  ( x  e.  A  ->  z  e.  A )  /\  A. z  e.  y  (
z  e.  A  ->  x  e.  A )
) ) )
32 ralbiim 2845 . . . . . . 7  |-  ( A. z  e.  y  (
x  e.  A  <->  z  e.  A )  <->  ( A. z  e.  y  (
x  e.  A  -> 
z  e.  A )  /\  A. z  e.  y  ( z  e.  A  ->  x  e.  A ) ) )
3331, 32syl6ibr 220 . . . . . 6  |-  ( x  e.  y  ->  ( A. z  e.  y 
( z  e.  A  ->  y  C_  A )  ->  A. z  e.  y  ( x  e.  A  <->  z  e.  A ) ) )
3418, 33impbid2 197 . . . . 5  |-  ( x  e.  y  ->  ( A. z  e.  y 
( x  e.  A  <->  z  e.  A )  <->  A. z  e.  y  ( z  e.  A  ->  y  C_  A ) ) )
3534pm5.32i 620 . . . 4  |-  ( ( x  e.  y  /\  A. z  e.  y  ( x  e.  A  <->  z  e.  A ) )  <->  ( x  e.  y  /\  A. z  e.  y  ( z  e.  A  ->  y  C_  A ) ) )
3635rexbii 2732 . . 3  |-  ( E. y  e.  J  ( x  e.  y  /\  A. z  e.  y  ( x  e.  A  <->  z  e.  A ) )  <->  E. y  e.  J  ( x  e.  y  /\  A. z  e.  y  ( z  e.  A  ->  y  C_  A ) ) )
3736ralbii 2731 . 2  |-  ( A. x  e.  X  E. y  e.  J  (
x  e.  y  /\  A. z  e.  y  ( x  e.  A  <->  z  e.  A ) )  <->  A. x  e.  X  E. y  e.  J  ( x  e.  y  /\  A. z  e.  y  ( z  e.  A  ->  y  C_  A ) ) )
382, 37syl6bb 254 1  |-  ( ( J  e.  Top  /\  A  C_  X )  -> 
( A  e.  ( J  i^i  ( Clsd `  J ) )  <->  A. x  e.  X  E. y  e.  J  ( x  e.  y  /\  A. z  e.  y  ( z  e.  A  ->  y  C_  A ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708    i^i cin 3321    C_ wss 3322   U.cuni 4017   ` cfv 5456   Topctop 16960   Clsdccld 17082
This theorem is referenced by:  conpcon  24924
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-iota 5420  df-fun 5458  df-fv 5464  df-topgen 13669  df-top 16965  df-cld 17085
  Copyright terms: Public domain W3C validator