MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmet3lem2 Unicode version

Theorem iscmet3lem2 18718
Description: Lemma for iscmet3 18719. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
iscmet3.1  |-  Z  =  ( ZZ>= `  M )
iscmet3.2  |-  J  =  ( MetOpen `  D )
iscmet3.3  |-  ( ph  ->  M  e.  ZZ )
iscmet3.4  |-  ( ph  ->  D  e.  ( Met `  X ) )
iscmet3.6  |-  ( ph  ->  F : Z --> X )
iscmet3.9  |-  ( ph  ->  A. k  e.  ZZ  A. u  e.  ( S `
 k ) A. v  e.  ( S `  k ) ( u D v )  < 
( ( 1  / 
2 ) ^ k
) )
iscmet3.10  |-  ( ph  ->  A. k  e.  Z  A. n  e.  ( M ... k ) ( F `  k )  e.  ( S `  n ) )
iscmet3.7  |-  ( ph  ->  G  e.  ( Fil `  X ) )
iscmet3.8  |-  ( ph  ->  S : ZZ --> G )
iscmet3.5  |-  ( ph  ->  F  e.  dom  ( ~~> t `  J )
)
Assertion
Ref Expression
iscmet3lem2  |-  ( ph  ->  ( J  fLim  G
)  =/=  (/) )
Distinct variable groups:    k, n, u, v, D    k, G    k, F, n, u, v   
k, X, n    k, J, n    S, k, n, u, v    k, Z, n    k, M, n    ph, k, n
Allowed substitution hints:    ph( v, u)    G( v, u, n)    J( v, u)    M( v, u)    X( v, u)    Z( v, u)

Proof of Theorem iscmet3lem2
Dummy variables  j 
r  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscmet3.5 . . 3  |-  ( ph  ->  F  e.  dom  ( ~~> t `  J )
)
2 eldmg 4874 . . . 4  |-  ( F  e.  dom  ( ~~> t `  J )  ->  ( F  e.  dom  ( ~~> t `  J )  <->  E. x  F ( ~~> t `  J ) x ) )
32ibi 232 . . 3  |-  ( F  e.  dom  ( ~~> t `  J )  ->  E. x  F ( ~~> t `  J ) x )
41, 3syl 15 . 2  |-  ( ph  ->  E. x  F ( ~~> t `  J ) x )
5 iscmet3.4 . . . . . . . . 9  |-  ( ph  ->  D  e.  ( Met `  X ) )
6 metxmet 17899 . . . . . . . . 9  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( * Met `  X
) )
75, 6syl 15 . . . . . . . 8  |-  ( ph  ->  D  e.  ( * Met `  X ) )
8 iscmet3.2 . . . . . . . . 9  |-  J  =  ( MetOpen `  D )
98mopntopon 17985 . . . . . . . 8  |-  ( D  e.  ( * Met `  X )  ->  J  e.  (TopOn `  X )
)
107, 9syl 15 . . . . . . 7  |-  ( ph  ->  J  e.  (TopOn `  X ) )
11 lmcl 17025 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  F
( ~~> t `  J
) x )  ->  x  e.  X )
1210, 11sylan 457 . . . . . 6  |-  ( (
ph  /\  F ( ~~> t `  J )
x )  ->  x  e.  X )
137adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  F ( ~~> t `  J )
x )  ->  D  e.  ( * Met `  X
) )
148mopni2 18039 . . . . . . . . . 10  |-  ( ( D  e.  ( * Met `  X )  /\  y  e.  J  /\  x  e.  y
)  ->  E. r  e.  RR+  ( x (
ball `  D )
r )  C_  y
)
15143expia 1153 . . . . . . . . 9  |-  ( ( D  e.  ( * Met `  X )  /\  y  e.  J
)  ->  ( x  e.  y  ->  E. r  e.  RR+  ( x (
ball `  D )
r )  C_  y
) )
1613, 15sylan 457 . . . . . . . 8  |-  ( ( ( ph  /\  F
( ~~> t `  J
) x )  /\  y  e.  J )  ->  ( x  e.  y  ->  E. r  e.  RR+  ( x ( ball `  D ) r ) 
C_  y ) )
17 iscmet3.7 . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  ( Fil `  X ) )
1817ad3antrrr 710 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  y  e.  J
)  /\  ( r  e.  RR+  /\  ( x ( ball `  D
) r )  C_  y ) )  ->  G  e.  ( Fil `  X ) )
19 iscmet3.3 . . . . . . . . . . . . . . 15  |-  ( ph  ->  M  e.  ZZ )
2019ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F
( ~~> t `  J
) x )  /\  r  e.  RR+ )  ->  M  e.  ZZ )
21 rphalfcl 10378 . . . . . . . . . . . . . . 15  |-  ( r  e.  RR+  ->  ( r  /  2 )  e.  RR+ )
2221adantl 452 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F
( ~~> t `  J
) x )  /\  r  e.  RR+ )  -> 
( r  /  2
)  e.  RR+ )
23 iscmet3.1 . . . . . . . . . . . . . . 15  |-  Z  =  ( ZZ>= `  M )
2423iscmet3lem3 18716 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  ( r  /  2
)  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( 1  /  2
) ^ k )  <  ( r  / 
2 ) )
2520, 22, 24syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F
( ~~> t `  J
) x )  /\  r  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( 1  /  2
) ^ k )  <  ( r  / 
2 ) )
2613adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F
( ~~> t `  J
) x )  /\  r  e.  RR+ )  ->  D  e.  ( * Met `  X ) )
2712adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F
( ~~> t `  J
) x )  /\  r  e.  RR+ )  ->  x  e.  X )
28 blcntr 17964 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( * Met `  X )  /\  x  e.  X  /\  ( r  /  2
)  e.  RR+ )  ->  x  e.  ( x ( ball `  D
) ( r  / 
2 ) ) )
2926, 27, 22, 28syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F
( ~~> t `  J
) x )  /\  r  e.  RR+ )  ->  x  e.  ( x
( ball `  D )
( r  /  2
) ) )
30 simplr 731 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F
( ~~> t `  J
) x )  /\  r  e.  RR+ )  ->  F ( ~~> t `  J ) x )
3122rpxrd 10391 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F
( ~~> t `  J
) x )  /\  r  e.  RR+ )  -> 
( r  /  2
)  e.  RR* )
328blopn 18046 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( * Met `  X )  /\  x  e.  X  /\  ( r  /  2
)  e.  RR* )  ->  ( x ( ball `  D ) ( r  /  2 ) )  e.  J )
3326, 27, 31, 32syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F
( ~~> t `  J
) x )  /\  r  e.  RR+ )  -> 
( x ( ball `  D ) ( r  /  2 ) )  e.  J )
3423, 29, 20, 30, 33lmcvg 16992 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F
( ~~> t `  J
) x )  /\  r  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  ( x (
ball `  D )
( r  /  2
) ) )
3523rexanuz2 11833 . . . . . . . . . . . . . 14  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( ( 1  /  2
) ^ k )  <  ( r  / 
2 )  /\  ( F `  k )  e.  ( x ( ball `  D ) ( r  /  2 ) ) )  <->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( 1  / 
2 ) ^ k
)  <  ( r  /  2 )  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  ( x ( ball `  D ) ( r  /  2 ) ) ) )
3623r19.2uz 11835 . . . . . . . . . . . . . . 15  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( ( 1  /  2
) ^ k )  <  ( r  / 
2 )  /\  ( F `  k )  e.  ( x ( ball `  D ) ( r  /  2 ) ) )  ->  E. k  e.  Z  ( (
( 1  /  2
) ^ k )  <  ( r  / 
2 )  /\  ( F `  k )  e.  ( x ( ball `  D ) ( r  /  2 ) ) ) )
3717ad3antrrr 710 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  ( k  e.  Z  /\  ( ( ( 1  /  2
) ^ k )  <  ( r  / 
2 )  /\  ( F `  k )  e.  ( x ( ball `  D ) ( r  /  2 ) ) ) ) )  ->  G  e.  ( Fil `  X ) )
38 iscmet3.8 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  S : ZZ --> G )
3938ad3antrrr 710 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  ( k  e.  Z  /\  ( ( ( 1  /  2
) ^ k )  <  ( r  / 
2 )  /\  ( F `  k )  e.  ( x ( ball `  D ) ( r  /  2 ) ) ) ) )  ->  S : ZZ --> G )
40 eluzelz 10238 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
4140, 23eleq2s 2375 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  Z  ->  k  e.  ZZ )
4241ad2antrl 708 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  ( k  e.  Z  /\  ( ( ( 1  /  2
) ^ k )  <  ( r  / 
2 )  /\  ( F `  k )  e.  ( x ( ball `  D ) ( r  /  2 ) ) ) ) )  -> 
k  e.  ZZ )
43 ffvelrn 5663 . . . . . . . . . . . . . . . . . . 19  |-  ( ( S : ZZ --> G  /\  k  e.  ZZ )  ->  ( S `  k
)  e.  G )
4439, 42, 43syl2anc 642 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  ( k  e.  Z  /\  ( ( ( 1  /  2
) ^ k )  <  ( r  / 
2 )  /\  ( F `  k )  e.  ( x ( ball `  D ) ( r  /  2 ) ) ) ) )  -> 
( S `  k
)  e.  G )
45 rpxr 10361 . . . . . . . . . . . . . . . . . . . . 21  |-  ( r  e.  RR+  ->  r  e. 
RR* )
4645adantl 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  F
( ~~> t `  J
) x )  /\  r  e.  RR+ )  -> 
r  e.  RR* )
47 blssm 17968 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( D  e.  ( * Met `  X )  /\  x  e.  X  /\  r  e.  RR* )  ->  ( x ( ball `  D ) r ) 
C_  X )
4826, 27, 46, 47syl3anc 1182 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  F
( ~~> t `  J
) x )  /\  r  e.  RR+ )  -> 
( x ( ball `  D ) r ) 
C_  X )
4948adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  ( k  e.  Z  /\  ( ( ( 1  /  2
) ^ k )  <  ( r  / 
2 )  /\  ( F `  k )  e.  ( x ( ball `  D ) ( r  /  2 ) ) ) ) )  -> 
( x ( ball `  D ) r ) 
C_  X )
5041adantl 452 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  k  e.  Z
)  ->  k  e.  ZZ )
51 1rp 10358 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  1  e.  RR+
52 rphalfcl 10378 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( 1  e.  RR+  ->  ( 1  /  2 )  e.  RR+ )
5351, 52ax-mp 8 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( 1  /  2 )  e.  RR+
54 rpexpcl 11122 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( 1  /  2
)  e.  RR+  /\  k  e.  ZZ )  ->  (
( 1  /  2
) ^ k )  e.  RR+ )
5553, 54mpan 651 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( k  e.  ZZ  ->  (
( 1  /  2
) ^ k )  e.  RR+ )
5650, 55syl 15 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  k  e.  Z
)  ->  ( (
1  /  2 ) ^ k )  e.  RR+ )
5756rpred 10390 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  k  e.  Z
)  ->  ( (
1  /  2 ) ^ k )  e.  RR )
5822adantr 451 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  k  e.  Z
)  ->  ( r  /  2 )  e.  RR+ )
5958rpred 10390 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  k  e.  Z
)  ->  ( r  /  2 )  e.  RR )
60 ltle 8910 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( 1  / 
2 ) ^ k
)  e.  RR  /\  ( r  /  2
)  e.  RR )  ->  ( ( ( 1  /  2 ) ^ k )  < 
( r  /  2
)  ->  ( (
1  /  2 ) ^ k )  <_ 
( r  /  2
) ) )
6157, 59, 60syl2anc 642 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  k  e.  Z
)  ->  ( (
( 1  /  2
) ^ k )  <  ( r  / 
2 )  ->  (
( 1  /  2
) ^ k )  <_  ( r  / 
2 ) ) )
62 simpll 730 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  F
( ~~> t `  J
) x )  /\  r  e.  RR+ )  ->  ph )
63 eluzfz2 10804 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ( M ... k ) )
6463, 23eleq2s 2375 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( k  e.  Z  ->  k  e.  ( M ... k
) )
6564adantl 452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  k  e.  Z )  ->  k  e.  ( M ... k
) )
66 iscmet3.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ph  ->  A. k  e.  Z  A. n  e.  ( M ... k ) ( F `  k )  e.  ( S `  n ) )
6766r19.21bi 2641 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  k  e.  Z )  ->  A. n  e.  ( M ... k
) ( F `  k )  e.  ( S `  n ) )
68 fveq2 5525 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( n  =  k  ->  ( S `  n )  =  ( S `  k ) )
6968eleq2d 2350 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( n  =  k  ->  (
( F `  k
)  e.  ( S `
 n )  <->  ( F `  k )  e.  ( S `  k ) ) )
7069rspcv 2880 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( k  e.  ( M ... k )  ->  ( A. n  e.  ( M ... k ) ( F `  k )  e.  ( S `  n )  ->  ( F `  k )  e.  ( S `  k
) ) )
7165, 67, 70sylc 56 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  ( S `  k
) )
7271adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  k  e.  Z )  /\  y  e.  ( S `  k
) )  ->  ( F `  k )  e.  ( S `  k
) )
73 simpr 447 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  k  e.  Z )  /\  y  e.  ( S `  k
) )  ->  y  e.  ( S `  k
) )
74 iscmet3.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ph  ->  A. k  e.  ZZ  A. u  e.  ( S `
 k ) A. v  e.  ( S `  k ) ( u D v )  < 
( ( 1  / 
2 ) ^ k
) )
7574ad2antrr 706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ph  /\  k  e.  Z )  /\  y  e.  ( S `  k
) )  ->  A. k  e.  ZZ  A. u  e.  ( S `  k
) A. v  e.  ( S `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) )
7641ad2antlr 707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ph  /\  k  e.  Z )  /\  y  e.  ( S `  k
) )  ->  k  e.  ZZ )
77 rsp 2603 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( A. k  e.  ZZ  A. u  e.  ( S `  k
) A. v  e.  ( S `  k
) ( u D v )  <  (
( 1  /  2
) ^ k )  ->  ( k  e.  ZZ  ->  A. u  e.  ( S `  k
) A. v  e.  ( S `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) ) )
7875, 76, 77sylc 56 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  k  e.  Z )  /\  y  e.  ( S `  k
) )  ->  A. u  e.  ( S `  k
) A. v  e.  ( S `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) )
79 oveq1 5865 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( u  =  ( F `  k )  ->  (
u D v )  =  ( ( F `
 k ) D v ) )
8079breq1d 4033 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( u  =  ( F `  k )  ->  (
( u D v )  <  ( ( 1  /  2 ) ^ k )  <->  ( ( F `  k ) D v )  < 
( ( 1  / 
2 ) ^ k
) ) )
81 oveq2 5866 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( v  =  y  ->  (
( F `  k
) D v )  =  ( ( F `
 k ) D y ) )
8281breq1d 4033 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( v  =  y  ->  (
( ( F `  k ) D v )  <  ( ( 1  /  2 ) ^ k )  <->  ( ( F `  k ) D y )  < 
( ( 1  / 
2 ) ^ k
) ) )
8380, 82rspc2va 2891 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( F `  k )  e.  ( S `  k )  /\  y  e.  ( S `  k ) )  /\  A. u  e.  ( S `  k
) A. v  e.  ( S `  k
) ( u D v )  <  (
( 1  /  2
) ^ k ) )  ->  ( ( F `  k ) D y )  < 
( ( 1  / 
2 ) ^ k
) )
8472, 73, 78, 83syl21anc 1181 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  k  e.  Z )  /\  y  e.  ( S `  k
) )  ->  (
( F `  k
) D y )  <  ( ( 1  /  2 ) ^
k ) )
857ad2antrr 706 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  k  e.  Z )  /\  y  e.  ( S `  k
) )  ->  D  e.  ( * Met `  X
) )
8641, 55syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( k  e.  Z  ->  (
( 1  /  2
) ^ k )  e.  RR+ )
8786rpxrd 10391 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( k  e.  Z  ->  (
( 1  /  2
) ^ k )  e.  RR* )
8887ad2antlr 707 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  k  e.  Z )  /\  y  e.  ( S `  k
) )  ->  (
( 1  /  2
) ^ k )  e.  RR* )
89 iscmet3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ph  ->  F : Z --> X )
90 ffvelrn 5663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( F : Z --> X  /\  k  e.  Z )  ->  ( F `  k
)  e.  X )
9189, 90sylan 457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  X )
9291adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  k  e.  Z )  /\  y  e.  ( S `  k
) )  ->  ( F `  k )  e.  X )
9317adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  k  e.  Z )  ->  G  e.  ( Fil `  X
) )
9438, 41, 43syl2an 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
ph  /\  k  e.  Z )  ->  ( S `  k )  e.  G )
95 filelss 17547 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( G  e.  ( Fil `  X )  /\  ( S `  k )  e.  G )  ->  ( S `  k )  C_  X )
9693, 94, 95syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
ph  /\  k  e.  Z )  ->  ( S `  k )  C_  X )
9796sselda 3180 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  k  e.  Z )  /\  y  e.  ( S `  k
) )  ->  y  e.  X )
98 elbl2 17950 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( D  e.  ( * Met `  X
)  /\  ( (
1  /  2 ) ^ k )  e. 
RR* )  /\  (
( F `  k
)  e.  X  /\  y  e.  X )
)  ->  ( y  e.  ( ( F `  k ) ( ball `  D ) ( ( 1  /  2 ) ^ k ) )  <-> 
( ( F `  k ) D y )  <  ( ( 1  /  2 ) ^ k ) ) )
9985, 88, 92, 97, 98syl22anc 1183 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  k  e.  Z )  /\  y  e.  ( S `  k
) )  ->  (
y  e.  ( ( F `  k ) ( ball `  D
) ( ( 1  /  2 ) ^
k ) )  <->  ( ( F `  k ) D y )  < 
( ( 1  / 
2 ) ^ k
) ) )
10084, 99mpbird 223 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  k  e.  Z )  /\  y  e.  ( S `  k
) )  ->  y  e.  ( ( F `  k ) ( ball `  D ) ( ( 1  /  2 ) ^ k ) ) )
101100ex 423 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  k  e.  Z )  ->  (
y  e.  ( S `
 k )  -> 
y  e.  ( ( F `  k ) ( ball `  D
) ( ( 1  /  2 ) ^
k ) ) ) )
102101ssrdv 3185 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  k  e.  Z )  ->  ( S `  k )  C_  ( ( F `  k ) ( ball `  D ) ( ( 1  /  2 ) ^ k ) ) )
10362, 102sylan 457 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  k  e.  Z
)  ->  ( S `  k )  C_  (
( F `  k
) ( ball `  D
) ( ( 1  /  2 ) ^
k ) ) )
10426adantr 451 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  k  e.  Z
)  ->  D  e.  ( * Met `  X
) )
10589ad2antrr 706 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  F
( ~~> t `  J
) x )  /\  r  e.  RR+ )  ->  F : Z --> X )
106105, 90sylan 457 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  k  e.  Z
)  ->  ( F `  k )  e.  X
)
10756rpxrd 10391 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  k  e.  Z
)  ->  ( (
1  /  2 ) ^ k )  e. 
RR* )
10831adantr 451 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  k  e.  Z
)  ->  ( r  /  2 )  e. 
RR* )
109 ssbl 17971 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( D  e.  ( * Met `  X
)  /\  ( F `  k )  e.  X
)  /\  ( (
( 1  /  2
) ^ k )  e.  RR*  /\  (
r  /  2 )  e.  RR* )  /\  (
( 1  /  2
) ^ k )  <_  ( r  / 
2 ) )  -> 
( ( F `  k ) ( ball `  D ) ( ( 1  /  2 ) ^ k ) ) 
C_  ( ( F `
 k ) (
ball `  D )
( r  /  2
) ) )
1101093expia 1153 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( D  e.  ( * Met `  X
)  /\  ( F `  k )  e.  X
)  /\  ( (
( 1  /  2
) ^ k )  e.  RR*  /\  (
r  /  2 )  e.  RR* ) )  -> 
( ( ( 1  /  2 ) ^
k )  <_  (
r  /  2 )  ->  ( ( F `
 k ) (
ball `  D )
( ( 1  / 
2 ) ^ k
) )  C_  (
( F `  k
) ( ball `  D
) ( r  / 
2 ) ) ) )
111104, 106, 107, 108, 110syl22anc 1183 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  k  e.  Z
)  ->  ( (
( 1  /  2
) ^ k )  <_  ( r  / 
2 )  ->  (
( F `  k
) ( ball `  D
) ( ( 1  /  2 ) ^
k ) )  C_  ( ( F `  k ) ( ball `  D ) ( r  /  2 ) ) ) )
112 sstr 3187 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( S `  k
)  C_  ( ( F `  k )
( ball `  D )
( ( 1  / 
2 ) ^ k
) )  /\  (
( F `  k
) ( ball `  D
) ( ( 1  /  2 ) ^
k ) )  C_  ( ( F `  k ) ( ball `  D ) ( r  /  2 ) ) )  ->  ( S `  k )  C_  (
( F `  k
) ( ball `  D
) ( r  / 
2 ) ) )
113103, 111, 112ee12an 1353 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  k  e.  Z
)  ->  ( (
( 1  /  2
) ^ k )  <_  ( r  / 
2 )  ->  ( S `  k )  C_  ( ( F `  k ) ( ball `  D ) ( r  /  2 ) ) ) )
11461, 113syld 40 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  k  e.  Z
)  ->  ( (
( 1  /  2
) ^ k )  <  ( r  / 
2 )  ->  ( S `  k )  C_  ( ( F `  k ) ( ball `  D ) ( r  /  2 ) ) ) )
115114adantrd 454 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  k  e.  Z
)  ->  ( (
( ( 1  / 
2 ) ^ k
)  <  ( r  /  2 )  /\  ( F `  k )  e.  ( x (
ball `  D )
( r  /  2
) ) )  -> 
( S `  k
)  C_  ( ( F `  k )
( ball `  D )
( r  /  2
) ) ) )
116115impr 602 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  ( k  e.  Z  /\  ( ( ( 1  /  2
) ^ k )  <  ( r  / 
2 )  /\  ( F `  k )  e.  ( x ( ball `  D ) ( r  /  2 ) ) ) ) )  -> 
( S `  k
)  C_  ( ( F `  k )
( ball `  D )
( r  /  2
) ) )
11727adantr 451 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  k  e.  Z
)  ->  x  e.  X )
118 blcom 17952 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( D  e.  ( * Met `  X
)  /\  ( r  /  2 )  e. 
RR* )  /\  (
x  e.  X  /\  ( F `  k )  e.  X ) )  ->  ( ( F `
 k )  e.  ( x ( ball `  D ) ( r  /  2 ) )  <-> 
x  e.  ( ( F `  k ) ( ball `  D
) ( r  / 
2 ) ) ) )
119104, 108, 117, 106, 118syl22anc 1183 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  k  e.  Z
)  ->  ( ( F `  k )  e.  ( x ( ball `  D ) ( r  /  2 ) )  <-> 
x  e.  ( ( F `  k ) ( ball `  D
) ( r  / 
2 ) ) ) )
120 rpre 10360 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( r  e.  RR+  ->  r  e.  RR )
121120ad2antlr 707 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  k  e.  Z
)  ->  r  e.  RR )
122 blhalf 17960 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( D  e.  ( * Met `  X
)  /\  ( F `  k )  e.  X
)  /\  ( r  e.  RR  /\  x  e.  ( ( F `  k ) ( ball `  D ) ( r  /  2 ) ) ) )  ->  (
( F `  k
) ( ball `  D
) ( r  / 
2 ) )  C_  ( x ( ball `  D ) r ) )
123122expr 598 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( D  e.  ( * Met `  X
)  /\  ( F `  k )  e.  X
)  /\  r  e.  RR )  ->  ( x  e.  ( ( F `
 k ) (
ball `  D )
( r  /  2
) )  ->  (
( F `  k
) ( ball `  D
) ( r  / 
2 ) )  C_  ( x ( ball `  D ) r ) ) )
124104, 106, 121, 123syl21anc 1181 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  k  e.  Z
)  ->  ( x  e.  ( ( F `  k ) ( ball `  D ) ( r  /  2 ) )  ->  ( ( F `
 k ) (
ball `  D )
( r  /  2
) )  C_  (
x ( ball `  D
) r ) ) )
125119, 124sylbid 206 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  k  e.  Z
)  ->  ( ( F `  k )  e.  ( x ( ball `  D ) ( r  /  2 ) )  ->  ( ( F `
 k ) (
ball `  D )
( r  /  2
) )  C_  (
x ( ball `  D
) r ) ) )
126125adantld 453 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  k  e.  Z
)  ->  ( (
( ( 1  / 
2 ) ^ k
)  <  ( r  /  2 )  /\  ( F `  k )  e.  ( x (
ball `  D )
( r  /  2
) ) )  -> 
( ( F `  k ) ( ball `  D ) ( r  /  2 ) ) 
C_  ( x (
ball `  D )
r ) ) )
127126impr 602 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  ( k  e.  Z  /\  ( ( ( 1  /  2
) ^ k )  <  ( r  / 
2 )  /\  ( F `  k )  e.  ( x ( ball `  D ) ( r  /  2 ) ) ) ) )  -> 
( ( F `  k ) ( ball `  D ) ( r  /  2 ) ) 
C_  ( x (
ball `  D )
r ) )
128116, 127sstrd 3189 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  ( k  e.  Z  /\  ( ( ( 1  /  2
) ^ k )  <  ( r  / 
2 )  /\  ( F `  k )  e.  ( x ( ball `  D ) ( r  /  2 ) ) ) ) )  -> 
( S `  k
)  C_  ( x
( ball `  D )
r ) )
129 filss 17548 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  ( Fil `  X )  /\  (
( S `  k
)  e.  G  /\  ( x ( ball `  D ) r ) 
C_  X  /\  ( S `  k )  C_  ( x ( ball `  D ) r ) ) )  ->  (
x ( ball `  D
) r )  e.  G )
13037, 44, 49, 128, 129syl13anc 1184 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  ( k  e.  Z  /\  ( ( ( 1  /  2
) ^ k )  <  ( r  / 
2 )  /\  ( F `  k )  e.  ( x ( ball `  D ) ( r  /  2 ) ) ) ) )  -> 
( x ( ball `  D ) r )  e.  G )
131130expr 598 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  r  e.  RR+ )  /\  k  e.  Z
)  ->  ( (
( ( 1  / 
2 ) ^ k
)  <  ( r  /  2 )  /\  ( F `  k )  e.  ( x (
ball `  D )
( r  /  2
) ) )  -> 
( x ( ball `  D ) r )  e.  G ) )
132131rexlimdva 2667 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F
( ~~> t `  J
) x )  /\  r  e.  RR+ )  -> 
( E. k  e.  Z  ( ( ( 1  /  2 ) ^ k )  < 
( r  /  2
)  /\  ( F `  k )  e.  ( x ( ball `  D
) ( r  / 
2 ) ) )  ->  ( x (
ball `  D )
r )  e.  G
) )
13336, 132syl5 28 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F
( ~~> t `  J
) x )  /\  r  e.  RR+ )  -> 
( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( ( 1  /  2 ) ^
k )  <  (
r  /  2 )  /\  ( F `  k )  e.  ( x ( ball `  D
) ( r  / 
2 ) ) )  ->  ( x (
ball `  D )
r )  e.  G
) )
13435, 133syl5bir 209 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F
( ~~> t `  J
) x )  /\  r  e.  RR+ )  -> 
( ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( 1  / 
2 ) ^ k
)  <  ( r  /  2 )  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  ( x ( ball `  D ) ( r  /  2 ) ) )  ->  ( x
( ball `  D )
r )  e.  G
) )
13525, 34, 134mp2and 660 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F
( ~~> t `  J
) x )  /\  r  e.  RR+ )  -> 
( x ( ball `  D ) r )  e.  G )
136135ad2ant2r 727 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  y  e.  J
)  /\  ( r  e.  RR+  /\  ( x ( ball `  D
) r )  C_  y ) )  -> 
( x ( ball `  D ) r )  e.  G )
13710adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  F ( ~~> t `  J )
x )  ->  J  e.  (TopOn `  X )
)
138 toponss 16667 . . . . . . . . . . . . 13  |-  ( ( J  e.  (TopOn `  X )  /\  y  e.  J )  ->  y  C_  X )
139137, 138sylan 457 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F
( ~~> t `  J
) x )  /\  y  e.  J )  ->  y  C_  X )
140139adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  y  e.  J
)  /\  ( r  e.  RR+  /\  ( x ( ball `  D
) r )  C_  y ) )  -> 
y  C_  X )
141 simprr 733 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  y  e.  J
)  /\  ( r  e.  RR+  /\  ( x ( ball `  D
) r )  C_  y ) )  -> 
( x ( ball `  D ) r ) 
C_  y )
142 filss 17548 . . . . . . . . . . 11  |-  ( ( G  e.  ( Fil `  X )  /\  (
( x ( ball `  D ) r )  e.  G  /\  y  C_  X  /\  ( x ( ball `  D
) r )  C_  y ) )  -> 
y  e.  G )
14318, 136, 140, 141, 142syl13anc 1184 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  y  e.  J
)  /\  ( r  e.  RR+  /\  ( x ( ball `  D
) r )  C_  y ) )  -> 
y  e.  G )
144143expr 598 . . . . . . . . 9  |-  ( ( ( ( ph  /\  F ( ~~> t `  J ) x )  /\  y  e.  J
)  /\  r  e.  RR+ )  ->  ( (
x ( ball `  D
) r )  C_  y  ->  y  e.  G
) )
145144rexlimdva 2667 . . . . . . . 8  |-  ( ( ( ph  /\  F
( ~~> t `  J
) x )  /\  y  e.  J )  ->  ( E. r  e.  RR+  ( x ( ball `  D ) r ) 
C_  y  ->  y  e.  G ) )
14616, 145syld 40 . . . . . . 7  |-  ( ( ( ph  /\  F
( ~~> t `  J
) x )  /\  y  e.  J )  ->  ( x  e.  y  ->  y  e.  G
) )
147146ralrimiva 2626 . . . . . 6  |-  ( (
ph  /\  F ( ~~> t `  J )
x )  ->  A. y  e.  J  ( x  e.  y  ->  y  e.  G ) )
148 flimopn 17670 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  G  e.  ( Fil `  X
) )  ->  (
x  e.  ( J 
fLim  G )  <->  ( x  e.  X  /\  A. y  e.  J  ( x  e.  y  ->  y  e.  G ) ) ) )
14910, 17, 148syl2anc 642 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( J  fLim  G )  <->  ( x  e.  X  /\  A. y  e.  J  ( x  e.  y  -> 
y  e.  G ) ) ) )
150149adantr 451 . . . . . 6  |-  ( (
ph  /\  F ( ~~> t `  J )
x )  ->  (
x  e.  ( J 
fLim  G )  <->  ( x  e.  X  /\  A. y  e.  J  ( x  e.  y  ->  y  e.  G ) ) ) )
15112, 147, 150mpbir2and 888 . . . . 5  |-  ( (
ph  /\  F ( ~~> t `  J )
x )  ->  x  e.  ( J  fLim  G
) )
152 ne0i 3461 . . . . 5  |-  ( x  e.  ( J  fLim  G )  ->  ( J  fLim  G )  =/=  (/) )
153151, 152syl 15 . . . 4  |-  ( (
ph  /\  F ( ~~> t `  J )
x )  ->  ( J  fLim  G )  =/=  (/) )
154153ex 423 . . 3  |-  ( ph  ->  ( F ( ~~> t `  J ) x  -> 
( J  fLim  G
)  =/=  (/) ) )
155154exlimdv 1664 . 2  |-  ( ph  ->  ( E. x  F ( ~~> t `  J
) x  ->  ( J  fLim  G )  =/=  (/) ) )
1564, 155mpd 14 1  |-  ( ph  ->  ( J  fLim  G
)  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544    C_ wss 3152   (/)c0 3455   class class class wbr 4023   dom cdm 4689   -->wf 5251   ` cfv 5255  (class class class)co 5858   RRcr 8736   1c1 8738   RR*cxr 8866    < clt 8867    <_ cle 8868    / cdiv 9423   2c2 9795   ZZcz 10024   ZZ>=cuz 10230   RR+crp 10354   ...cfz 10782   ^cexp 11104   * Metcxmt 16369   Metcme 16370   ballcbl 16371   MetOpencmopn 16372  TopOnctopon 16632   ~~> tclm 16956   Filcfil 17540    fLim cflim 17629
This theorem is referenced by:  iscmet3  18719
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-fz 10783  df-fl 10925  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-topgen 13344  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-top 16636  df-bases 16638  df-topon 16639  df-ntr 16757  df-nei 16835  df-lm 16959  df-fbas 17520  df-fil 17541  df-flim 17634
  Copyright terms: Public domain W3C validator