MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmp Unicode version

Theorem iscmp 17115
Description: The predicate "is a compact topology". (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
iscmp.1  |-  X  = 
U. J
Assertion
Ref Expression
iscmp  |-  ( J  e.  Comp  <->  ( J  e. 
Top  /\  A. y  e.  ~P  J ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
) ) )
Distinct variable group:    y, z, J
Allowed substitution hints:    X( y, z)

Proof of Theorem iscmp
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pweq 3628 . . 3  |-  ( x  =  J  ->  ~P x  =  ~P J
)
2 unieq 3836 . . . . . 6  |-  ( x  =  J  ->  U. x  =  U. J )
3 iscmp.1 . . . . . 6  |-  X  = 
U. J
42, 3syl6eqr 2333 . . . . 5  |-  ( x  =  J  ->  U. x  =  X )
54eqeq1d 2291 . . . 4  |-  ( x  =  J  ->  ( U. x  =  U. y 
<->  X  =  U. y
) )
64eqeq1d 2291 . . . . 5  |-  ( x  =  J  ->  ( U. x  =  U. z 
<->  X  =  U. z
) )
76rexbidv 2564 . . . 4  |-  ( x  =  J  ->  ( E. z  e.  ( ~P y  i^i  Fin ) U. x  =  U. z 
<->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) )
85, 7imbi12d 311 . . 3  |-  ( x  =  J  ->  (
( U. x  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. x  =  U. z )  <->  ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) ) )
91, 8raleqbidv 2748 . 2  |-  ( x  =  J  ->  ( A. y  e.  ~P  x ( U. x  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. x  =  U. z )  <->  A. y  e.  ~P  J ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
) ) )
10 df-cmp 17114 . 2  |-  Comp  =  { x  e.  Top  | 
A. y  e.  ~P  x ( U. x  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. x  =  U. z ) }
119, 10elrab2 2925 1  |-  ( J  e.  Comp  <->  ( J  e. 
Top  /\  A. y  e.  ~P  J ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    i^i cin 3151   ~Pcpw 3625   U.cuni 3827   Fincfn 6863   Topctop 16631   Compccmp 17113
This theorem is referenced by:  cmpcov  17116  cncmp  17119  fincmp  17120  cmptop  17122  cmpsub  17127  tgcmp  17128  uncmp  17130  sscmp  17132  cmpfi  17135  txcmp  17337  alexsubb  17740  alexsubALT  17745  onsucsuccmpi  24882  limsucncmpi  24884  bwt2  25592  comppfsc  26307  heibor  26545
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-in 3159  df-ss 3166  df-pw 3627  df-uni 3828  df-cmp 17114
  Copyright terms: Public domain W3C validator