MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmp Unicode version

Theorem iscmp 17131
Description: The predicate "is a compact topology". (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
iscmp.1  |-  X  = 
U. J
Assertion
Ref Expression
iscmp  |-  ( J  e.  Comp  <->  ( J  e. 
Top  /\  A. y  e.  ~P  J ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
) ) )
Distinct variable group:    y, z, J
Allowed substitution hints:    X( y, z)

Proof of Theorem iscmp
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pweq 3641 . . 3  |-  ( x  =  J  ->  ~P x  =  ~P J
)
2 unieq 3852 . . . . . 6  |-  ( x  =  J  ->  U. x  =  U. J )
3 iscmp.1 . . . . . 6  |-  X  = 
U. J
42, 3syl6eqr 2346 . . . . 5  |-  ( x  =  J  ->  U. x  =  X )
54eqeq1d 2304 . . . 4  |-  ( x  =  J  ->  ( U. x  =  U. y 
<->  X  =  U. y
) )
64eqeq1d 2304 . . . . 5  |-  ( x  =  J  ->  ( U. x  =  U. z 
<->  X  =  U. z
) )
76rexbidv 2577 . . . 4  |-  ( x  =  J  ->  ( E. z  e.  ( ~P y  i^i  Fin ) U. x  =  U. z 
<->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) )
85, 7imbi12d 311 . . 3  |-  ( x  =  J  ->  (
( U. x  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. x  =  U. z )  <->  ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) ) )
91, 8raleqbidv 2761 . 2  |-  ( x  =  J  ->  ( A. y  e.  ~P  x ( U. x  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. x  =  U. z )  <->  A. y  e.  ~P  J ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
) ) )
10 df-cmp 17130 . 2  |-  Comp  =  { x  e.  Top  | 
A. y  e.  ~P  x ( U. x  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. x  =  U. z ) }
119, 10elrab2 2938 1  |-  ( J  e.  Comp  <->  ( J  e. 
Top  /\  A. y  e.  ~P  J ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557    i^i cin 3164   ~Pcpw 3638   U.cuni 3843   Fincfn 6879   Topctop 16647   Compccmp 17129
This theorem is referenced by:  cmpcov  17132  cncmp  17135  fincmp  17136  cmptop  17138  cmpsub  17143  tgcmp  17144  uncmp  17146  sscmp  17148  cmpfi  17151  txcmp  17353  alexsubb  17756  alexsubALT  17761  onsucsuccmpi  24954  limsucncmpi  24956  bwt2  25695  comppfsc  26410  heibor  26648
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-in 3172  df-ss 3179  df-pw 3640  df-uni 3844  df-cmp 17130
  Copyright terms: Public domain W3C validator