MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscms Unicode version

Theorem iscms 18783
Description: A complete metric space is a metric space with a complete metric. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
iscms.1  |-  X  =  ( Base `  M
)
iscms.2  |-  D  =  ( ( dist `  M
)  |`  ( X  X.  X ) )
Assertion
Ref Expression
iscms  |-  ( M  e. CMetSp 
<->  ( M  e.  MetSp  /\  D  e.  ( CMet `  X ) ) )

Proof of Theorem iscms
Dummy variables  w  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 5555 . . . 4  |-  ( Base `  w )  e.  _V
21a1i 10 . . 3  |-  ( w  =  M  ->  ( Base `  w )  e. 
_V )
3 fveq2 5541 . . . . . . 7  |-  ( w  =  M  ->  ( dist `  w )  =  ( dist `  M
) )
43adantr 451 . . . . . 6  |-  ( ( w  =  M  /\  b  =  ( Base `  w ) )  -> 
( dist `  w )  =  ( dist `  M
) )
5 id 19 . . . . . . . 8  |-  ( b  =  ( Base `  w
)  ->  b  =  ( Base `  w )
)
6 fveq2 5541 . . . . . . . . 9  |-  ( w  =  M  ->  ( Base `  w )  =  ( Base `  M
) )
7 iscms.1 . . . . . . . . 9  |-  X  =  ( Base `  M
)
86, 7syl6eqr 2346 . . . . . . . 8  |-  ( w  =  M  ->  ( Base `  w )  =  X )
95, 8sylan9eqr 2350 . . . . . . 7  |-  ( ( w  =  M  /\  b  =  ( Base `  w ) )  -> 
b  =  X )
109, 9xpeq12d 4730 . . . . . 6  |-  ( ( w  =  M  /\  b  =  ( Base `  w ) )  -> 
( b  X.  b
)  =  ( X  X.  X ) )
114, 10reseq12d 4972 . . . . 5  |-  ( ( w  =  M  /\  b  =  ( Base `  w ) )  -> 
( ( dist `  w
)  |`  ( b  X.  b ) )  =  ( ( dist `  M
)  |`  ( X  X.  X ) ) )
12 iscms.2 . . . . 5  |-  D  =  ( ( dist `  M
)  |`  ( X  X.  X ) )
1311, 12syl6eqr 2346 . . . 4  |-  ( ( w  =  M  /\  b  =  ( Base `  w ) )  -> 
( ( dist `  w
)  |`  ( b  X.  b ) )  =  D )
149fveq2d 5545 . . . 4  |-  ( ( w  =  M  /\  b  =  ( Base `  w ) )  -> 
( CMet `  b )  =  ( CMet `  X
) )
1513, 14eleq12d 2364 . . 3  |-  ( ( w  =  M  /\  b  =  ( Base `  w ) )  -> 
( ( ( dist `  w )  |`  (
b  X.  b ) )  e.  ( CMet `  b )  <->  D  e.  ( CMet `  X )
) )
162, 15sbcied 3040 . 2  |-  ( w  =  M  ->  ( [. ( Base `  w
)  /  b ]. ( ( dist `  w
)  |`  ( b  X.  b ) )  e.  ( CMet `  b
)  <->  D  e.  ( CMet `  X ) ) )
17 df-cms 18773 . 2  |- CMetSp  =  {
w  e.  MetSp  |  [. ( Base `  w )  /  b ]. (
( dist `  w )  |`  ( b  X.  b
) )  e.  (
CMet `  b ) }
1816, 17elrab2 2938 1  |-  ( M  e. CMetSp 
<->  ( M  e.  MetSp  /\  D  e.  ( CMet `  X ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801   [.wsbc 3004    X. cxp 4703    |` cres 4707   ` cfv 5271   Basecbs 13164   distcds 13233   MetSpcmt 17899   CMetcms 18696  CMetSpccms 18770
This theorem is referenced by:  cmscmet  18784  cmsms  18786  cmspropd  18787  cmsss  18788  cncms  18790
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-nul 4165
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-xp 4711  df-res 4717  df-iota 5235  df-fv 5279  df-cms 18773
  Copyright terms: Public domain W3C validator