MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscn Unicode version

Theorem iscn 16965
Description: The predicate " F is a continuous function from topology  J to topology  K." Definition of continuous function in [Munkres] p. 102. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
iscn  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
Distinct variable groups:    y, J    y, K    y, X    y, F    y, Y

Proof of Theorem iscn
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 cnfval 16963 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  Cn  K )  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( `' f " y
)  e.  J }
)
21eleq2d 2350 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  F  e.  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( `' f " y
)  e.  J }
) )
3 cnveq 4855 . . . . . . 7  |-  ( f  =  F  ->  `' f  =  `' F
)
43imaeq1d 5011 . . . . . 6  |-  ( f  =  F  ->  ( `' f " y
)  =  ( `' F " y ) )
54eleq1d 2349 . . . . 5  |-  ( f  =  F  ->  (
( `' f "
y )  e.  J  <->  ( `' F " y )  e.  J ) )
65ralbidv 2563 . . . 4  |-  ( f  =  F  ->  ( A. y  e.  K  ( `' f " y
)  e.  J  <->  A. y  e.  K  ( `' F " y )  e.  J ) )
76elrab 2923 . . 3  |-  ( F  e.  { f  e.  ( Y  ^m  X
)  |  A. y  e.  K  ( `' f " y )  e.  J }  <->  ( F  e.  ( Y  ^m  X
)  /\  A. y  e.  K  ( `' F " y )  e.  J ) )
8 toponmax 16666 . . . . 5  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  K )
9 toponmax 16666 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
10 elmapg 6785 . . . . 5  |-  ( ( Y  e.  K  /\  X  e.  J )  ->  ( F  e.  ( Y  ^m  X )  <-> 
F : X --> Y ) )
118, 9, 10syl2anr 464 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( Y  ^m  X
)  <->  F : X --> Y ) )
1211anbi1d 685 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( F  e.  ( Y  ^m  X )  /\  A. y  e.  K  ( `' F " y )  e.  J )  <->  ( F : X --> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
137, 12syl5bb 248 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( `' f
" y )  e.  J }  <->  ( F : X --> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
142, 13bitrd 244 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   {crab 2547   `'ccnv 4688   "cima 4692   -->wf 5251   ` cfv 5255  (class class class)co 5858    ^m cmap 6772  TopOnctopon 16632    Cn ccn 16954
This theorem is referenced by:  iscn2  16968  cnf2  16979  tgcn  16982  ssidcn  16985  iscncl  16998  cnntr  17004  cnss1  17005  cnss2  17006  cncnp  17009  cnrest  17013  cnrest2  17014  cndis  17019  cnindis  17020  kgencn  17251  kgencn3  17253  tx1cn  17303  tx2cn  17304  txdis1cn  17329  qtopid  17396  qtopcn  17405  qtopf1  17507  divstgplem  17803  cvmlift2lem9a  23834  rfcnpre1  27690
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-map 6774  df-top 16636  df-topon 16639  df-cn 16957
  Copyright terms: Public domain W3C validator