Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscnrm Structured version   Unicode version

Theorem iscnrm 17392
 Description: The property of being completely or hereditarily normal. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
ist0.1
Assertion
Ref Expression
iscnrm CNrm t
Distinct variable groups:   ,   ,

Proof of Theorem iscnrm
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 unieq 4026 . . . . 5
2 ist0.1 . . . . 5
31, 2syl6eqr 2488 . . . 4
43pweqd 3806 . . 3
5 oveq1 6091 . . . 4 t t
65eleq1d 2504 . . 3 t t
74, 6raleqbidv 2918 . 2 t t
8 df-cnrm 17387 . 2 CNrm t
97, 8elrab2 3096 1 CNrm t
 Colors of variables: wff set class Syntax hints:   wb 178   wa 360   wceq 1653   wcel 1726  wral 2707  cpw 3801  cuni 4017  (class class class)co 6084   ↾t crest 13653  ctop 16963  cnrm 17379  CNrmccnrm 17380 This theorem is referenced by:  cnrmtop  17406  iscnrm2  17407  cnrmi  17429 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-iota 5421  df-fv 5465  df-ov 6087  df-cnrm 17387
 Copyright terms: Public domain W3C validator