MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscnrm Unicode version

Theorem iscnrm 17067
Description: The property of being completely or hereditarily normal. (Contributed by Mario Carneiro, 26-Aug-2015.)
Hypothesis
Ref Expression
ist0.1  |-  X  = 
U. J
Assertion
Ref Expression
iscnrm  |-  ( J  e. CNrm 
<->  ( J  e.  Top  /\ 
A. x  e.  ~P  X ( Jt  x )  e.  Nrm ) )
Distinct variable groups:    x, J    x, X

Proof of Theorem iscnrm
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 unieq 3852 . . . . 5  |-  ( j  =  J  ->  U. j  =  U. J )
2 ist0.1 . . . . 5  |-  X  = 
U. J
31, 2syl6eqr 2346 . . . 4  |-  ( j  =  J  ->  U. j  =  X )
43pweqd 3643 . . 3  |-  ( j  =  J  ->  ~P U. j  =  ~P X
)
5 oveq1 5881 . . . 4  |-  ( j  =  J  ->  (
jt  x )  =  ( Jt  x ) )
65eleq1d 2362 . . 3  |-  ( j  =  J  ->  (
( jt  x )  e.  Nrm  <->  ( Jt  x )  e.  Nrm ) )
74, 6raleqbidv 2761 . 2  |-  ( j  =  J  ->  ( A. x  e.  ~P  U. j ( jt  x )  e.  Nrm  <->  A. x  e.  ~P  X ( Jt  x )  e.  Nrm )
)
8 df-cnrm 17062 . 2  |- CNrm  =  {
j  e.  Top  |  A. x  e.  ~P  U. j ( jt  x )  e.  Nrm }
97, 8elrab2 2938 1  |-  ( J  e. CNrm 
<->  ( J  e.  Top  /\ 
A. x  e.  ~P  X ( Jt  x )  e.  Nrm ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   ~Pcpw 3638   U.cuni 3843  (class class class)co 5874   ↾t crest 13341   Topctop 16647   Nrmcnrm 17054  CNrmccnrm 17055
This theorem is referenced by:  cnrmtop  17081  iscnrm2  17082  cnrmi  17104
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-iota 5235  df-fv 5279  df-ov 5877  df-cnrm 17062
  Copyright terms: Public domain W3C validator