![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > iscnrm | Unicode version |
Description: The property of being completely or hereditarily normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
ist0.1 |
![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
iscnrm |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 3992 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ist0.1 |
. . . . 5
![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl6eqr 2462 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | pweqd 3772 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | oveq1 6055 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 5 | eleq1d 2478 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 4, 6 | raleqbidv 2884 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | df-cnrm 17344 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 7, 8 | elrab2 3062 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem is referenced by: cnrmtop 17363 iscnrm2 17364 cnrmi 17386 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1552 ax-5 1563 ax-17 1623 ax-9 1662 ax-8 1683 ax-6 1740 ax-7 1745 ax-11 1757 ax-12 1946 ax-ext 2393 |
This theorem depends on definitions: df-bi 178 df-or 360 df-an 361 df-3an 938 df-tru 1325 df-ex 1548 df-nf 1551 df-sb 1656 df-clab 2399 df-cleq 2405 df-clel 2408 df-nfc 2537 df-ral 2679 df-rex 2680 df-rab 2683 df-v 2926 df-dif 3291 df-un 3293 df-in 3295 df-ss 3302 df-nul 3597 df-if 3708 df-pw 3769 df-sn 3788 df-pr 3789 df-op 3791 df-uni 3984 df-br 4181 df-iota 5385 df-fv 5429 df-ov 6051 df-cnrm 17344 |
Copyright terms: Public domain | W3C validator |