MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscon Unicode version

Theorem iscon 17397
Description: The predicate  J is a connected topology . (Contributed by FL, 17-Nov-2008.)
Hypothesis
Ref Expression
iscon.1  |-  X  = 
U. J
Assertion
Ref Expression
iscon  |-  ( J  e.  Con  <->  ( J  e.  Top  /\  ( J  i^i  ( Clsd `  J
) )  =  { (/)
,  X } ) )

Proof of Theorem iscon
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 id 20 . . . 4  |-  ( j  =  J  ->  j  =  J )
2 fveq2 5668 . . . 4  |-  ( j  =  J  ->  ( Clsd `  j )  =  ( Clsd `  J
) )
31, 2ineq12d 3486 . . 3  |-  ( j  =  J  ->  (
j  i^i  ( Clsd `  j ) )  =  ( J  i^i  ( Clsd `  J ) ) )
4 unieq 3966 . . . . 5  |-  ( j  =  J  ->  U. j  =  U. J )
5 iscon.1 . . . . 5  |-  X  = 
U. J
64, 5syl6eqr 2437 . . . 4  |-  ( j  =  J  ->  U. j  =  X )
76preq2d 3833 . . 3  |-  ( j  =  J  ->  { (/) , 
U. j }  =  { (/) ,  X }
)
83, 7eqeq12d 2401 . 2  |-  ( j  =  J  ->  (
( j  i^i  ( Clsd `  j ) )  =  { (/) ,  U. j }  <->  ( J  i^i  ( Clsd `  J )
)  =  { (/) ,  X } ) )
9 df-con 17396 . 2  |-  Con  =  { j  e.  Top  |  ( j  i^i  ( Clsd `  j ) )  =  { (/) ,  U. j } }
108, 9elrab2 3037 1  |-  ( J  e.  Con  <->  ( J  e.  Top  /\  ( J  i^i  ( Clsd `  J
) )  =  { (/)
,  X } ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    i^i cin 3262   (/)c0 3571   {cpr 3758   U.cuni 3957   ` cfv 5394   Topctop 16881   Clsdccld 17003   Conccon 17395
This theorem is referenced by:  iscon2  17398  conclo  17399  conndisj  17400  contop  17401
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-rex 2655  df-rab 2658  df-v 2901  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-iota 5358  df-fv 5402  df-con 17396
  Copyright terms: Public domain W3C validator