Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isconc1 Unicode version

Theorem isconc1 26109
Description: Concatenation with the empty set. (Contributed by FL, 14-Jan-2014.)
Assertion
Ref Expression
isconc1  |-  ( A  e.  B  ->  ( (/) 
conc  A )  =  A )

Proof of Theorem isconc1
Dummy variables  x  y  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4166 . . . 4  |-  (/)  e.  _V
21a1i 10 . . 3  |-  ( A  e.  B  ->  (/)  e.  _V )
3 elex 2809 . . 3  |-  ( A  e.  B  ->  A  e.  _V )
4 eqid 2296 . . . . 5  |-  (/)  =  (/)
5 iftrue 3584 . . . . 5  |-  ( (/)  =  (/)  ->  if ( (/)  =  (/) ,  A ,  if ( A  =  (/) ,  (/) ,  ( (/)  u.  (
a  e.  ( ( ( # `  (/) )  +  1 ) ... (
( # `  (/) )  +  ( # `  A
) ) )  |->  ( A `  ( a  -  ( # `  (/) ) ) ) ) ) ) )  =  A )
64, 5ax-mp 8 . . . 4  |-  if (
(/)  =  (/) ,  A ,  if ( A  =  (/) ,  (/) ,  ( (/)  u.  ( a  e.  ( ( ( # `  (/) )  +  1 ) ... (
( # `  (/) )  +  ( # `  A
) ) )  |->  ( A `  ( a  -  ( # `  (/) ) ) ) ) ) ) )  =  A
76, 3syl5eqel 2380 . . 3  |-  ( A  e.  B  ->  if ( (/)  =  (/) ,  A ,  if ( A  =  (/) ,  (/) ,  ( (/)  u.  ( a  e.  ( ( ( # `  (/) )  +  1 ) ... (
( # `  (/) )  +  ( # `  A
) ) )  |->  ( A `  ( a  -  ( # `  (/) ) ) ) ) ) ) )  e.  _V )
8 eqeq1 2302 . . . . 5  |-  ( x  =  (/)  ->  ( x  =  (/)  <->  (/)  =  (/) ) )
9 id 19 . . . . . 6  |-  ( x  =  (/)  ->  x  =  (/) )
10 fveq2 5541 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( # `  x )  =  (
# `  (/) ) )
1110oveq1d 5889 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( (
# `  x )  +  1 )  =  ( ( # `  (/) )  +  1 ) )
1210oveq1d 5889 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( (
# `  x )  +  ( # `  y
) )  =  ( ( # `  (/) )  +  ( # `  y
) ) )
1311, 12oveq12d 5892 . . . . . . . 8  |-  ( x  =  (/)  ->  ( ( ( # `  x
)  +  1 ) ... ( ( # `  x )  +  (
# `  y )
) )  =  ( ( ( # `  (/) )  +  1 ) ... (
( # `  (/) )  +  ( # `  y
) ) ) )
1410oveq2d 5890 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( a  -  ( # `  x
) )  =  ( a  -  ( # `  (/) ) ) )
1514fveq2d 5545 . . . . . . . 8  |-  ( x  =  (/)  ->  ( y `
 ( a  -  ( # `  x ) ) )  =  ( y `  ( a  -  ( # `  (/) ) ) ) )
1613, 15mpteq12dv 4114 . . . . . . 7  |-  ( x  =  (/)  ->  ( a  e.  ( ( (
# `  x )  +  1 ) ... ( ( # `  x
)  +  ( # `  y ) ) ) 
|->  ( y `  (
a  -  ( # `  x ) ) ) )  =  ( a  e.  ( ( (
# `  (/) )  +  1 ) ... (
( # `  (/) )  +  ( # `  y
) ) )  |->  ( y `  ( a  -  ( # `  (/) ) ) ) ) )
179, 16uneq12d 3343 . . . . . 6  |-  ( x  =  (/)  ->  ( x  u.  ( a  e.  ( ( ( # `  x )  +  1 ) ... ( (
# `  x )  +  ( # `  y
) ) )  |->  ( y `  ( a  -  ( # `  x
) ) ) ) )  =  ( (/)  u.  ( a  e.  ( ( ( # `  (/) )  +  1 ) ... (
( # `  (/) )  +  ( # `  y
) ) )  |->  ( y `  ( a  -  ( # `  (/) ) ) ) ) ) )
189, 17ifeq12d 3594 . . . . 5  |-  ( x  =  (/)  ->  if ( y  =  (/) ,  x ,  ( x  u.  ( a  e.  ( ( ( # `  x
)  +  1 ) ... ( ( # `  x )  +  (
# `  y )
) )  |->  ( y `
 ( a  -  ( # `  x ) ) ) ) ) )  =  if ( y  =  (/) ,  (/) ,  ( (/)  u.  (
a  e.  ( ( ( # `  (/) )  +  1 ) ... (
( # `  (/) )  +  ( # `  y
) ) )  |->  ( y `  ( a  -  ( # `  (/) ) ) ) ) ) ) )
198, 18ifbieq2d 3598 . . . 4  |-  ( x  =  (/)  ->  if ( x  =  (/) ,  y ,  if ( y  =  (/) ,  x ,  ( x  u.  (
a  e.  ( ( ( # `  x
)  +  1 ) ... ( ( # `  x )  +  (
# `  y )
) )  |->  ( y `
 ( a  -  ( # `  x ) ) ) ) ) ) )  =  if ( (/)  =  (/) ,  y ,  if ( y  =  (/) ,  (/) ,  (
(/)  u.  ( a  e.  ( ( ( # `  (/) )  +  1 ) ... ( (
# `  (/) )  +  ( # `  y
) ) )  |->  ( y `  ( a  -  ( # `  (/) ) ) ) ) ) ) ) )
20 id 19 . . . . 5  |-  ( y  =  A  ->  y  =  A )
21 eqeq1 2302 . . . . . 6  |-  ( y  =  A  ->  (
y  =  (/)  <->  A  =  (/) ) )
22 fveq2 5541 . . . . . . . . . 10  |-  ( y  =  A  ->  ( # `
 y )  =  ( # `  A
) )
2322oveq2d 5890 . . . . . . . . 9  |-  ( y  =  A  ->  (
( # `  (/) )  +  ( # `  y
) )  =  ( ( # `  (/) )  +  ( # `  A
) ) )
2423oveq2d 5890 . . . . . . . 8  |-  ( y  =  A  ->  (
( ( # `  (/) )  +  1 ) ... (
( # `  (/) )  +  ( # `  y
) ) )  =  ( ( ( # `  (/) )  +  1 ) ... ( (
# `  (/) )  +  ( # `  A
) ) ) )
25 fveq1 5540 . . . . . . . 8  |-  ( y  =  A  ->  (
y `  ( a  -  ( # `  (/) ) ) )  =  ( A `
 ( a  -  ( # `  (/) ) ) ) )
2624, 25mpteq12dv 4114 . . . . . . 7  |-  ( y  =  A  ->  (
a  e.  ( ( ( # `  (/) )  +  1 ) ... (
( # `  (/) )  +  ( # `  y
) ) )  |->  ( y `  ( a  -  ( # `  (/) ) ) ) )  =  ( a  e.  ( ( ( # `  (/) )  +  1 ) ... (
( # `  (/) )  +  ( # `  A
) ) )  |->  ( A `  ( a  -  ( # `  (/) ) ) ) ) )
2726uneq2d 3342 . . . . . 6  |-  ( y  =  A  ->  ( (/) 
u.  ( a  e.  ( ( ( # `  (/) )  +  1 ) ... ( (
# `  (/) )  +  ( # `  y
) ) )  |->  ( y `  ( a  -  ( # `  (/) ) ) ) ) )  =  ( (/)  u.  (
a  e.  ( ( ( # `  (/) )  +  1 ) ... (
( # `  (/) )  +  ( # `  A
) ) )  |->  ( A `  ( a  -  ( # `  (/) ) ) ) ) ) )
2821, 27ifbieq2d 3598 . . . . 5  |-  ( y  =  A  ->  if ( y  =  (/) ,  (/) ,  ( (/)  u.  (
a  e.  ( ( ( # `  (/) )  +  1 ) ... (
( # `  (/) )  +  ( # `  y
) ) )  |->  ( y `  ( a  -  ( # `  (/) ) ) ) ) ) )  =  if ( A  =  (/) ,  (/) ,  (
(/)  u.  ( a  e.  ( ( ( # `  (/) )  +  1 ) ... ( (
# `  (/) )  +  ( # `  A
) ) )  |->  ( A `  ( a  -  ( # `  (/) ) ) ) ) ) ) )
2920, 28ifeq12d 3594 . . . 4  |-  ( y  =  A  ->  if ( (/)  =  (/) ,  y ,  if ( y  =  (/) ,  (/) ,  (
(/)  u.  ( a  e.  ( ( ( # `  (/) )  +  1 ) ... ( (
# `  (/) )  +  ( # `  y
) ) )  |->  ( y `  ( a  -  ( # `  (/) ) ) ) ) ) ) )  =  if (
(/)  =  (/) ,  A ,  if ( A  =  (/) ,  (/) ,  ( (/)  u.  ( a  e.  ( ( ( # `  (/) )  +  1 ) ... (
( # `  (/) )  +  ( # `  A
) ) )  |->  ( A `  ( a  -  ( # `  (/) ) ) ) ) ) ) ) )
30 df-conc 26108 . . . 4  |-  conc  =  ( x  e.  _V ,  y  e.  _V  |->  if ( x  =  (/) ,  y ,  if ( y  =  (/) ,  x ,  ( x  u.  ( a  e.  ( ( ( # `  x
)  +  1 ) ... ( ( # `  x )  +  (
# `  y )
) )  |->  ( y `
 ( a  -  ( # `  x ) ) ) ) ) ) ) )
3119, 29, 30ovmpt2g 5998 . . 3  |-  ( (
(/)  e.  _V  /\  A  e.  _V  /\  if (
(/)  =  (/) ,  A ,  if ( A  =  (/) ,  (/) ,  ( (/)  u.  ( a  e.  ( ( ( # `  (/) )  +  1 ) ... (
( # `  (/) )  +  ( # `  A
) ) )  |->  ( A `  ( a  -  ( # `  (/) ) ) ) ) ) ) )  e.  _V )  ->  ( (/)  conc  A )  =  if ( (/)  =  (/) ,  A ,  if ( A  =  (/) ,  (/) ,  ( (/)  u.  (
a  e.  ( ( ( # `  (/) )  +  1 ) ... (
( # `  (/) )  +  ( # `  A
) ) )  |->  ( A `  ( a  -  ( # `  (/) ) ) ) ) ) ) ) )
322, 3, 7, 31syl3anc 1182 . 2  |-  ( A  e.  B  ->  ( (/) 
conc  A )  =  if ( (/)  =  (/) ,  A ,  if ( A  =  (/) ,  (/) ,  ( (/)  u.  ( a  e.  ( ( ( # `  (/) )  +  1 ) ... (
( # `  (/) )  +  ( # `  A
) ) )  |->  ( A `  ( a  -  ( # `  (/) ) ) ) ) ) ) ) )
3332, 6syl6eq 2344 1  |-  ( A  e.  B  ->  ( (/) 
conc  A )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696   _Vcvv 2801    u. cun 3163   (/)c0 3468   ifcif 3578    e. cmpt 4093   ` cfv 5271  (class class class)co 5874   1c1 8754    + caddc 8756    - cmin 9053   ...cfz 10798   #chash 11353    conc cconc 26107
This theorem is referenced by:  clscnc  26113
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-conc 26108
  Copyright terms: Public domain W3C validator