Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isconcl7a Unicode version

Theorem isconcl7a 26105
Description: Two distinct non-parallel lines intersect in one and only point. (For my private use only. Don't use.) (Contributed by FL, 25-Feb-2016.)
Hypotheses
Ref Expression
isconcl7a.1  |-  L  =  (PLines `  G )
isconcl7a.3  |-  ( ph  ->  G  e. Ig )
isconcl7a.4  |-  ( ph  -> 
L1  e.  L )
isconcl7a.5  |-  ( ph  ->  L 2  e.  L
)
isconcl7a.6  |-  ( ph  -> 
L1  =/=  L 2
)
isconcl7a.7  |-  ( ph  ->  X  e.  ( L1  i^i  L 2 ) )
Assertion
Ref Expression
isconcl7a  |-  ( ph  ->  ( L1  i^i  L 2 )  =  { X } )

Proof of Theorem isconcl7a
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isconcl7a.1 . . . . . 6  |-  L  =  (PLines `  G )
2 eqid 2283 . . . . . 6  |-  (PPoints `  G
)  =  (PPoints `  G
)
3 isconcl7a.3 . . . . . 6  |-  ( ph  ->  G  e. Ig )
4 isconcl7a.4 . . . . . 6  |-  ( ph  -> 
L1  e.  L )
5 isconcl7a.5 . . . . . 6  |-  ( ph  ->  L 2  e.  L
)
6 isconcl7a.6 . . . . . 6  |-  ( ph  -> 
L1  =/=  L 2
)
7 isconcl7a.7 . . . . . . 7  |-  ( ph  ->  X  e.  ( L1  i^i  L 2 ) )
8 ne0i 3461 . . . . . . 7  |-  ( X  e.  ( L1  i^i  L 2 )  ->  ( L1  i^i  L 2 )  =/=  (/) )
97, 8syl 15 . . . . . 6  |-  ( ph  ->  ( L1  i^i  L 2 )  =/=  (/) )
101, 2, 3, 4, 5, 6, 9isconcl6ab 26104 . . . . 5  |-  ( ph  ->  E! x ( x  e.  L1  /\  x  e.  L 2 ) )
11 elin 3358 . . . . . 6  |-  ( x  e.  ( L1  i^i  L 2 )  <->  ( x  e.  L1  /\  x  e.  L 2 ) )
1211eubii 2152 . . . . 5  |-  ( E! x  x  e.  (
L1  i^i  L 2
)  <->  E! x ( x  e.  L1  /\  x  e.  L 2 ) )
1310, 12sylibr 203 . . . 4  |-  ( ph  ->  E! x  x  e.  ( L1  i^i  L 2 ) )
14 eleq1 2343 . . . . . . . 8  |-  ( x  =  X  ->  (
x  e.  ( L1  i^i  L 2 )  <->  X  e.  ( L1  i^i  L 2
) ) )
1514rexsng 3673 . . . . . . 7  |-  ( X  e.  ( L1  i^i  L 2 )  ->  ( E. x  e.  { X } x  e.  ( L1  i^i  L 2 )  <->  X  e.  ( L1  i^i  L 2 ) ) )
167, 15syl 15 . . . . . 6  |-  ( ph  ->  ( E. x  e. 
{ X } x  e.  ( L1  i^i  L 2 )  <->  X  e.  ( L1  i^i  L 2
) ) )
177, 16mpbird 223 . . . . 5  |-  ( ph  ->  E. x  e.  { X } x  e.  (
L1  i^i  L 2
) )
18 exancom 1573 . . . . . 6  |-  ( E. x ( x  e.  ( L1  i^i  L 2 )  /\  x  e.  { X } )  <->  E. x ( x  e. 
{ X }  /\  x  e.  ( L1  i^i  L 2 ) ) )
19 df-rex 2549 . . . . . 6  |-  ( E. x  e.  { X } x  e.  ( L1  i^i  L 2 )  <->  E. x ( x  e. 
{ X }  /\  x  e.  ( L1  i^i  L 2 ) ) )
2018, 19bitr4i 243 . . . . 5  |-  ( E. x ( x  e.  ( L1  i^i  L 2 )  /\  x  e.  { X } )  <->  E. x  e.  { X } x  e.  ( L1  i^i  L 2 )
)
2117, 20sylibr 203 . . . 4  |-  ( ph  ->  E. x ( x  e.  ( L1  i^i  L 2 )  /\  x  e.  { X } ) )
22 eupicka 2207 . . . 4  |-  ( ( E! x  x  e.  ( L1  i^i  L 2 )  /\  E. x ( x  e.  ( L1  i^i  L 2 )  /\  x  e.  { X } ) )  ->  A. x
( x  e.  (
L1  i^i  L 2
)  ->  x  e.  { X } ) )
2313, 21, 22syl2anc 642 . . 3  |-  ( ph  ->  A. x ( x  e.  ( L1  i^i  L 2 )  ->  x  e.  { X } ) )
2414ralsng 3672 . . . . . 6  |-  ( X  e.  ( L1  i^i  L 2 )  ->  ( A. x  e.  { X } x  e.  ( L1  i^i  L 2 )  <->  X  e.  ( L1  i^i  L 2 ) ) )
257, 24syl 15 . . . . 5  |-  ( ph  ->  ( A. x  e. 
{ X } x  e.  ( L1  i^i  L 2 )  <->  X  e.  ( L1  i^i  L 2
) ) )
267, 25mpbird 223 . . . 4  |-  ( ph  ->  A. x  e.  { X } x  e.  (
L1  i^i  L 2
) )
27 df-ral 2548 . . . 4  |-  ( A. x  e.  { X } x  e.  ( L1  i^i  L 2 )  <->  A. x ( x  e. 
{ X }  ->  x  e.  ( L1  i^i  L 2 ) ) )
2826, 27sylib 188 . . 3  |-  ( ph  ->  A. x ( x  e.  { X }  ->  x  e.  ( L1  i^i  L 2 ) ) )
29 albiim 1598 . . 3  |-  ( A. x ( x  e.  ( L1  i^i  L 2 )  <->  x  e.  { X } )  <->  ( A. x ( x  e.  ( L1  i^i  L 2 )  ->  x  e.  { X } )  /\  A. x ( x  e.  { X }  ->  x  e.  (
L1  i^i  L 2
) ) ) )
3023, 28, 29sylanbrc 645 . 2  |-  ( ph  ->  A. x ( x  e.  ( L1  i^i  L 2 )  <->  x  e.  { X } ) )
31 dfcleq 2277 . 2  |-  ( (
L1  i^i  L 2
)  =  { X } 
<-> 
A. x ( x  e.  ( L1  i^i  L 2 )  <->  x  e.  { X } ) )
3230, 31sylibr 203 1  |-  ( ph  ->  ( L1  i^i  L 2 )  =  { X } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527   E.wex 1528    = wceq 1623    e. wcel 1684   E!weu 2143    =/= wne 2446   A.wral 2543   E.wrex 2544    i^i cin 3151   (/)c0 3455   {csn 3640   ` cfv 5255  PPointscpoints 26056  PLinescplines 26058  Igcig 26060
This theorem is referenced by:  lppotos  26144
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-ig2 26061  df-li 26077
  Copyright terms: Public domain W3C validator