MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscph Unicode version

Theorem iscph 18606
Description: A complex pre-Hilbert space is a pre-Hilbert space over a quadratically closed subfield of the complexes, with a norm defined (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
iscph.v  |-  V  =  ( Base `  W
)
iscph.h  |-  .,  =  ( .i `  W )
iscph.n  |-  N  =  ( norm `  W
)
iscph.f  |-  F  =  (Scalar `  W )
iscph.k  |-  K  =  ( Base `  F
)
Assertion
Ref Expression
iscph  |-  ( W  e.  CPreHil 
<->  ( ( W  e. 
PreHil  /\  W  e. NrmMod  /\  F  =  (flds  K ) )  /\  ( sqr " ( K  i^i  ( 0 [,)  +oo ) ) )  C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) ) )
Distinct variable group:    x, W
Allowed substitution hints:    F( x)    ., ( x)    K( x)    N( x)    V( x)

Proof of Theorem iscph
Dummy variables  f 
k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3358 . . . . 5  |-  ( W  e.  ( PreHil  i^i NrmMod )  <->  ( W  e.  PreHil  /\  W  e. NrmMod ) )
21anbi1i 676 . . . 4  |-  ( ( W  e.  ( PreHil  i^i NrmMod )  /\  F  =  (flds  K ) )  <->  ( ( W  e.  PreHil  /\  W  e. NrmMod )  /\  F  =  (flds  K ) ) )
3 df-3an 936 . . . 4  |-  ( ( W  e.  PreHil  /\  W  e. NrmMod  /\  F  =  (flds  K ) )  <->  ( ( W  e.  PreHil  /\  W  e. NrmMod )  /\  F  =  (flds  K ) ) )
42, 3bitr4i 243 . . 3  |-  ( ( W  e.  ( PreHil  i^i NrmMod )  /\  F  =  (flds  K ) )  <->  ( W  e. 
PreHil  /\  W  e. NrmMod  /\  F  =  (flds  K ) ) )
54anbi1i 676 . 2  |-  ( ( ( W  e.  (
PreHil  i^i NrmMod )  /\  F  =  (flds  K ) )  /\  (
( sqr " ( K  i^i  ( 0 [,) 
+oo ) ) ) 
C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) )  <-> 
( ( W  e. 
PreHil  /\  W  e. NrmMod  /\  F  =  (flds  K ) )  /\  (
( sqr " ( K  i^i  ( 0 [,) 
+oo ) ) ) 
C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) ) )
6 fvex 5539 . . . . . 6  |-  (Scalar `  w )  e.  _V
76a1i 10 . . . . 5  |-  ( w  =  W  ->  (Scalar `  w )  e.  _V )
8 fvex 5539 . . . . . . 7  |-  ( Base `  f )  e.  _V
98a1i 10 . . . . . 6  |-  ( ( w  =  W  /\  f  =  (Scalar `  w
) )  ->  ( Base `  f )  e. 
_V )
10 simplr 731 . . . . . . . . . 10  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
f  =  (Scalar `  w ) )
11 simpll 730 . . . . . . . . . . . 12  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  ->  w  =  W )
1211fveq2d 5529 . . . . . . . . . . 11  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
(Scalar `  w )  =  (Scalar `  W )
)
13 iscph.f . . . . . . . . . . 11  |-  F  =  (Scalar `  W )
1412, 13syl6eqr 2333 . . . . . . . . . 10  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
(Scalar `  w )  =  F )
1510, 14eqtrd 2315 . . . . . . . . 9  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
f  =  F )
16 simpr 447 . . . . . . . . . . 11  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
k  =  ( Base `  f ) )
1715fveq2d 5529 . . . . . . . . . . . 12  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( Base `  f )  =  ( Base `  F
) )
18 iscph.k . . . . . . . . . . . 12  |-  K  =  ( Base `  F
)
1917, 18syl6eqr 2333 . . . . . . . . . . 11  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( Base `  f )  =  K )
2016, 19eqtrd 2315 . . . . . . . . . 10  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
k  =  K )
2120oveq2d 5874 . . . . . . . . 9  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
(flds  k
)  =  (flds  K ) )
2215, 21eqeq12d 2297 . . . . . . . 8  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( f  =  (flds  k )  <-> 
F  =  (flds  K ) ) )
2320ineq1d 3369 . . . . . . . . . 10  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( k  i^i  (
0 [,)  +oo ) )  =  ( K  i^i  ( 0 [,)  +oo ) ) )
2423imaeq2d 5012 . . . . . . . . 9  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( sqr " (
k  i^i  ( 0 [,)  +oo ) ) )  =  ( sqr " ( K  i^i  ( 0 [,) 
+oo ) ) ) )
2524, 20sseq12d 3207 . . . . . . . 8  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( ( sqr " (
k  i^i  ( 0 [,)  +oo ) ) ) 
C_  k  <->  ( sqr " ( K  i^i  (
0 [,)  +oo ) ) )  C_  K )
)
2611fveq2d 5529 . . . . . . . . . 10  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( norm `  w )  =  ( norm `  W
) )
27 iscph.n . . . . . . . . . 10  |-  N  =  ( norm `  W
)
2826, 27syl6eqr 2333 . . . . . . . . 9  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( norm `  w )  =  N )
2911fveq2d 5529 . . . . . . . . . . 11  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( Base `  w )  =  ( Base `  W
) )
30 iscph.v . . . . . . . . . . 11  |-  V  =  ( Base `  W
)
3129, 30syl6eqr 2333 . . . . . . . . . 10  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( Base `  w )  =  V )
3211fveq2d 5529 . . . . . . . . . . . . 13  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( .i `  w
)  =  ( .i
`  W ) )
33 iscph.h . . . . . . . . . . . . 13  |-  .,  =  ( .i `  W )
3432, 33syl6eqr 2333 . . . . . . . . . . . 12  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( .i `  w
)  =  .,  )
3534oveqd 5875 . . . . . . . . . . 11  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( x ( .i
`  w ) x )  =  ( x 
.,  x ) )
3635fveq2d 5529 . . . . . . . . . 10  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( sqr `  (
x ( .i `  w ) x ) )  =  ( sqr `  ( x  .,  x
) ) )
3731, 36mpteq12dv 4098 . . . . . . . . 9  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( x  e.  (
Base `  w )  |->  ( sqr `  (
x ( .i `  w ) x ) ) )  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) )
3828, 37eqeq12d 2297 . . . . . . . 8  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( ( norm `  w
)  =  ( x  e.  ( Base `  w
)  |->  ( sqr `  (
x ( .i `  w ) x ) ) )  <->  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) )
3922, 25, 383anbi123d 1252 . . . . . . 7  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( ( f  =  (flds  k )  /\  ( sqr " ( k  i^i  ( 0 [,)  +oo ) ) )  C_  k  /\  ( norm `  w
)  =  ( x  e.  ( Base `  w
)  |->  ( sqr `  (
x ( .i `  w ) x ) ) ) )  <->  ( F  =  (flds  K )  /\  ( sqr " ( K  i^i  ( 0 [,)  +oo ) ) )  C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) ) ) )
40 3anass 938 . . . . . . 7  |-  ( ( F  =  (flds  K )  /\  ( sqr " ( K  i^i  ( 0 [,)  +oo ) ) )  C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) )  <->  ( F  =  (flds  K )  /\  ( ( sqr " ( K  i^i  ( 0 [,) 
+oo ) ) ) 
C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) ) )
4139, 40syl6bb 252 . . . . . 6  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( ( f  =  (flds  k )  /\  ( sqr " ( k  i^i  ( 0 [,)  +oo ) ) )  C_  k  /\  ( norm `  w
)  =  ( x  e.  ( Base `  w
)  |->  ( sqr `  (
x ( .i `  w ) x ) ) ) )  <->  ( F  =  (flds  K )  /\  ( ( sqr " ( K  i^i  ( 0 [,) 
+oo ) ) ) 
C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) ) ) )
429, 41sbcied 3027 . . . . 5  |-  ( ( w  =  W  /\  f  =  (Scalar `  w
) )  ->  ( [. ( Base `  f
)  /  k ]. ( f  =  (flds  k )  /\  ( sqr " (
k  i^i  ( 0 [,)  +oo ) ) ) 
C_  k  /\  ( norm `  w )  =  ( x  e.  (
Base `  w )  |->  ( sqr `  (
x ( .i `  w ) x ) ) ) )  <->  ( F  =  (flds  K )  /\  ( ( sqr " ( K  i^i  ( 0 [,) 
+oo ) ) ) 
C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) ) ) )
437, 42sbcied 3027 . . . 4  |-  ( w  =  W  ->  ( [. (Scalar `  w )  /  f ]. [. ( Base `  f )  / 
k ]. ( f  =  (flds  k )  /\  ( sqr " ( k  i^i  ( 0 [,)  +oo ) ) )  C_  k  /\  ( norm `  w
)  =  ( x  e.  ( Base `  w
)  |->  ( sqr `  (
x ( .i `  w ) x ) ) ) )  <->  ( F  =  (flds  K )  /\  ( ( sqr " ( K  i^i  ( 0 [,) 
+oo ) ) ) 
C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) ) ) )
44 df-cph 18604 . . . 4  |-  CPreHil  =  {
w  e.  ( PreHil  i^i NrmMod )  |  [. (Scalar `  w )  /  f ]. [. ( Base `  f
)  /  k ]. ( f  =  (flds  k )  /\  ( sqr " (
k  i^i  ( 0 [,)  +oo ) ) ) 
C_  k  /\  ( norm `  w )  =  ( x  e.  (
Base `  w )  |->  ( sqr `  (
x ( .i `  w ) x ) ) ) ) }
4543, 44elrab2 2925 . . 3  |-  ( W  e.  CPreHil 
<->  ( W  e.  (
PreHil  i^i NrmMod )  /\  ( F  =  (flds  K )  /\  (
( sqr " ( K  i^i  ( 0 [,) 
+oo ) ) ) 
C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) ) ) )
46 anass 630 . . 3  |-  ( ( ( W  e.  (
PreHil  i^i NrmMod )  /\  F  =  (flds  K ) )  /\  (
( sqr " ( K  i^i  ( 0 [,) 
+oo ) ) ) 
C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) )  <-> 
( W  e.  (
PreHil  i^i NrmMod )  /\  ( F  =  (flds  K )  /\  (
( sqr " ( K  i^i  ( 0 [,) 
+oo ) ) ) 
C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) ) ) )
4745, 46bitr4i 243 . 2  |-  ( W  e.  CPreHil 
<->  ( ( W  e.  ( PreHil  i^i NrmMod )  /\  F  =  (flds  K ) )  /\  (
( sqr " ( K  i^i  ( 0 [,) 
+oo ) ) ) 
C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) ) )
48 3anass 938 . 2  |-  ( ( ( W  e.  PreHil  /\  W  e. NrmMod  /\  F  =  (flds  K ) )  /\  ( sqr " ( K  i^i  ( 0 [,)  +oo ) ) )  C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) )  <->  ( ( W  e.  PreHil  /\  W  e. NrmMod  /\  F  =  (flds  K ) )  /\  ( ( sqr " ( K  i^i  ( 0 [,) 
+oo ) ) ) 
C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) ) )
495, 47, 483bitr4i 268 1  |-  ( W  e.  CPreHil 
<->  ( ( W  e. 
PreHil  /\  W  e. NrmMod  /\  F  =  (flds  K ) )  /\  ( sqr " ( K  i^i  ( 0 [,)  +oo ) ) )  C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   _Vcvv 2788   [.wsbc 2991    i^i cin 3151    C_ wss 3152    e. cmpt 4077   "cima 4692   ` cfv 5255  (class class class)co 5858   0cc0 8737    +oocpnf 8864   [,)cico 10658   sqrcsqr 11718   Basecbs 13148   ↾s cress 13149  Scalarcsca 13211   .icip 13213  ℂfldccnfld 16377   PreHilcphl 16528   normcnm 18099  NrmModcnlm 18103   CPreHilccph 18602
This theorem is referenced by:  cphphl  18607  cphnlm  18608  cphsca  18615  cphsqrcl  18620  cphnmfval  18628  tchcph  18667
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-nul 4149
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-xp 4695  df-cnv 4697  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fv 5263  df-ov 5861  df-cph 18604
  Copyright terms: Public domain W3C validator