MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscph Unicode version

Theorem iscph 19094
Description: A complex pre-Hilbert space is a pre-Hilbert space over a quadratically closed subfield of the complexes, with a norm defined (Contributed by Mario Carneiro, 8-Oct-2015.)
Hypotheses
Ref Expression
iscph.v  |-  V  =  ( Base `  W
)
iscph.h  |-  .,  =  ( .i `  W )
iscph.n  |-  N  =  ( norm `  W
)
iscph.f  |-  F  =  (Scalar `  W )
iscph.k  |-  K  =  ( Base `  F
)
Assertion
Ref Expression
iscph  |-  ( W  e.  CPreHil 
<->  ( ( W  e. 
PreHil  /\  W  e. NrmMod  /\  F  =  (flds  K ) )  /\  ( sqr " ( K  i^i  ( 0 [,)  +oo ) ) )  C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) ) )
Distinct variable group:    x, W
Allowed substitution hints:    F( x)    ., ( x)    K( x)    N( x)    V( x)

Proof of Theorem iscph
Dummy variables  f 
k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3498 . . . . 5  |-  ( W  e.  ( PreHil  i^i NrmMod )  <->  ( W  e.  PreHil  /\  W  e. NrmMod ) )
21anbi1i 677 . . . 4  |-  ( ( W  e.  ( PreHil  i^i NrmMod )  /\  F  =  (flds  K ) )  <->  ( ( W  e.  PreHil  /\  W  e. NrmMod )  /\  F  =  (flds  K ) ) )
3 df-3an 938 . . . 4  |-  ( ( W  e.  PreHil  /\  W  e. NrmMod  /\  F  =  (flds  K ) )  <->  ( ( W  e.  PreHil  /\  W  e. NrmMod )  /\  F  =  (flds  K ) ) )
42, 3bitr4i 244 . . 3  |-  ( ( W  e.  ( PreHil  i^i NrmMod )  /\  F  =  (flds  K ) )  <->  ( W  e. 
PreHil  /\  W  e. NrmMod  /\  F  =  (flds  K ) ) )
54anbi1i 677 . 2  |-  ( ( ( W  e.  (
PreHil  i^i NrmMod )  /\  F  =  (flds  K ) )  /\  (
( sqr " ( K  i^i  ( 0 [,) 
+oo ) ) ) 
C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) )  <-> 
( ( W  e. 
PreHil  /\  W  e. NrmMod  /\  F  =  (flds  K ) )  /\  (
( sqr " ( K  i^i  ( 0 [,) 
+oo ) ) ) 
C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) ) )
6 fvex 5709 . . . . . 6  |-  (Scalar `  w )  e.  _V
76a1i 11 . . . . 5  |-  ( w  =  W  ->  (Scalar `  w )  e.  _V )
8 fvex 5709 . . . . . . 7  |-  ( Base `  f )  e.  _V
98a1i 11 . . . . . 6  |-  ( ( w  =  W  /\  f  =  (Scalar `  w
) )  ->  ( Base `  f )  e. 
_V )
10 simplr 732 . . . . . . . . . 10  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
f  =  (Scalar `  w ) )
11 simpll 731 . . . . . . . . . . . 12  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  ->  w  =  W )
1211fveq2d 5699 . . . . . . . . . . 11  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
(Scalar `  w )  =  (Scalar `  W )
)
13 iscph.f . . . . . . . . . . 11  |-  F  =  (Scalar `  W )
1412, 13syl6eqr 2462 . . . . . . . . . 10  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
(Scalar `  w )  =  F )
1510, 14eqtrd 2444 . . . . . . . . 9  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
f  =  F )
16 simpr 448 . . . . . . . . . . 11  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
k  =  ( Base `  f ) )
1715fveq2d 5699 . . . . . . . . . . . 12  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( Base `  f )  =  ( Base `  F
) )
18 iscph.k . . . . . . . . . . . 12  |-  K  =  ( Base `  F
)
1917, 18syl6eqr 2462 . . . . . . . . . . 11  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( Base `  f )  =  K )
2016, 19eqtrd 2444 . . . . . . . . . 10  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
k  =  K )
2120oveq2d 6064 . . . . . . . . 9  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
(flds  k
)  =  (flds  K ) )
2215, 21eqeq12d 2426 . . . . . . . 8  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( f  =  (flds  k )  <-> 
F  =  (flds  K ) ) )
2320ineq1d 3509 . . . . . . . . . 10  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( k  i^i  (
0 [,)  +oo ) )  =  ( K  i^i  ( 0 [,)  +oo ) ) )
2423imaeq2d 5170 . . . . . . . . 9  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( sqr " (
k  i^i  ( 0 [,)  +oo ) ) )  =  ( sqr " ( K  i^i  ( 0 [,) 
+oo ) ) ) )
2524, 20sseq12d 3345 . . . . . . . 8  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( ( sqr " (
k  i^i  ( 0 [,)  +oo ) ) ) 
C_  k  <->  ( sqr " ( K  i^i  (
0 [,)  +oo ) ) )  C_  K )
)
2611fveq2d 5699 . . . . . . . . . 10  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( norm `  w )  =  ( norm `  W
) )
27 iscph.n . . . . . . . . . 10  |-  N  =  ( norm `  W
)
2826, 27syl6eqr 2462 . . . . . . . . 9  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( norm `  w )  =  N )
2911fveq2d 5699 . . . . . . . . . . 11  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( Base `  w )  =  ( Base `  W
) )
30 iscph.v . . . . . . . . . . 11  |-  V  =  ( Base `  W
)
3129, 30syl6eqr 2462 . . . . . . . . . 10  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( Base `  w )  =  V )
3211fveq2d 5699 . . . . . . . . . . . . 13  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( .i `  w
)  =  ( .i
`  W ) )
33 iscph.h . . . . . . . . . . . . 13  |-  .,  =  ( .i `  W )
3432, 33syl6eqr 2462 . . . . . . . . . . . 12  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( .i `  w
)  =  .,  )
3534oveqd 6065 . . . . . . . . . . 11  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( x ( .i
`  w ) x )  =  ( x 
.,  x ) )
3635fveq2d 5699 . . . . . . . . . 10  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( sqr `  (
x ( .i `  w ) x ) )  =  ( sqr `  ( x  .,  x
) ) )
3731, 36mpteq12dv 4255 . . . . . . . . 9  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( x  e.  (
Base `  w )  |->  ( sqr `  (
x ( .i `  w ) x ) ) )  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) )
3828, 37eqeq12d 2426 . . . . . . . 8  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( ( norm `  w
)  =  ( x  e.  ( Base `  w
)  |->  ( sqr `  (
x ( .i `  w ) x ) ) )  <->  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) )
3922, 25, 383anbi123d 1254 . . . . . . 7  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( ( f  =  (flds  k )  /\  ( sqr " ( k  i^i  ( 0 [,)  +oo ) ) )  C_  k  /\  ( norm `  w
)  =  ( x  e.  ( Base `  w
)  |->  ( sqr `  (
x ( .i `  w ) x ) ) ) )  <->  ( F  =  (flds  K )  /\  ( sqr " ( K  i^i  ( 0 [,)  +oo ) ) )  C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) ) ) )
40 3anass 940 . . . . . . 7  |-  ( ( F  =  (flds  K )  /\  ( sqr " ( K  i^i  ( 0 [,)  +oo ) ) )  C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) )  <->  ( F  =  (flds  K )  /\  ( ( sqr " ( K  i^i  ( 0 [,) 
+oo ) ) ) 
C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) ) )
4139, 40syl6bb 253 . . . . . 6  |-  ( ( ( w  =  W  /\  f  =  (Scalar `  w ) )  /\  k  =  ( Base `  f ) )  -> 
( ( f  =  (flds  k )  /\  ( sqr " ( k  i^i  ( 0 [,)  +oo ) ) )  C_  k  /\  ( norm `  w
)  =  ( x  e.  ( Base `  w
)  |->  ( sqr `  (
x ( .i `  w ) x ) ) ) )  <->  ( F  =  (flds  K )  /\  ( ( sqr " ( K  i^i  ( 0 [,) 
+oo ) ) ) 
C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) ) ) )
429, 41sbcied 3165 . . . . 5  |-  ( ( w  =  W  /\  f  =  (Scalar `  w
) )  ->  ( [. ( Base `  f
)  /  k ]. ( f  =  (flds  k )  /\  ( sqr " (
k  i^i  ( 0 [,)  +oo ) ) ) 
C_  k  /\  ( norm `  w )  =  ( x  e.  (
Base `  w )  |->  ( sqr `  (
x ( .i `  w ) x ) ) ) )  <->  ( F  =  (flds  K )  /\  ( ( sqr " ( K  i^i  ( 0 [,) 
+oo ) ) ) 
C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) ) ) )
437, 42sbcied 3165 . . . 4  |-  ( w  =  W  ->  ( [. (Scalar `  w )  /  f ]. [. ( Base `  f )  / 
k ]. ( f  =  (flds  k )  /\  ( sqr " ( k  i^i  ( 0 [,)  +oo ) ) )  C_  k  /\  ( norm `  w
)  =  ( x  e.  ( Base `  w
)  |->  ( sqr `  (
x ( .i `  w ) x ) ) ) )  <->  ( F  =  (flds  K )  /\  ( ( sqr " ( K  i^i  ( 0 [,) 
+oo ) ) ) 
C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) ) ) )
44 df-cph 19092 . . . 4  |-  CPreHil  =  {
w  e.  ( PreHil  i^i NrmMod )  |  [. (Scalar `  w )  /  f ]. [. ( Base `  f
)  /  k ]. ( f  =  (flds  k )  /\  ( sqr " (
k  i^i  ( 0 [,)  +oo ) ) ) 
C_  k  /\  ( norm `  w )  =  ( x  e.  (
Base `  w )  |->  ( sqr `  (
x ( .i `  w ) x ) ) ) ) }
4543, 44elrab2 3062 . . 3  |-  ( W  e.  CPreHil 
<->  ( W  e.  (
PreHil  i^i NrmMod )  /\  ( F  =  (flds  K )  /\  (
( sqr " ( K  i^i  ( 0 [,) 
+oo ) ) ) 
C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) ) ) )
46 anass 631 . . 3  |-  ( ( ( W  e.  (
PreHil  i^i NrmMod )  /\  F  =  (flds  K ) )  /\  (
( sqr " ( K  i^i  ( 0 [,) 
+oo ) ) ) 
C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) )  <-> 
( W  e.  (
PreHil  i^i NrmMod )  /\  ( F  =  (flds  K )  /\  (
( sqr " ( K  i^i  ( 0 [,) 
+oo ) ) ) 
C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) ) ) )
4745, 46bitr4i 244 . 2  |-  ( W  e.  CPreHil 
<->  ( ( W  e.  ( PreHil  i^i NrmMod )  /\  F  =  (flds  K ) )  /\  (
( sqr " ( K  i^i  ( 0 [,) 
+oo ) ) ) 
C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) ) )
48 3anass 940 . 2  |-  ( ( ( W  e.  PreHil  /\  W  e. NrmMod  /\  F  =  (flds  K ) )  /\  ( sqr " ( K  i^i  ( 0 [,)  +oo ) ) )  C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) )  <->  ( ( W  e.  PreHil  /\  W  e. NrmMod  /\  F  =  (flds  K ) )  /\  ( ( sqr " ( K  i^i  ( 0 [,) 
+oo ) ) ) 
C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) ) )
495, 47, 483bitr4i 269 1  |-  ( W  e.  CPreHil 
<->  ( ( W  e. 
PreHil  /\  W  e. NrmMod  /\  F  =  (flds  K ) )  /\  ( sqr " ( K  i^i  ( 0 [,)  +oo ) ) )  C_  K  /\  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   _Vcvv 2924   [.wsbc 3129    i^i cin 3287    C_ wss 3288    e. cmpt 4234   "cima 4848   ` cfv 5421  (class class class)co 6048   0cc0 8954    +oocpnf 9081   [,)cico 10882   sqrcsqr 12001   Basecbs 13432   ↾s cress 13433  Scalarcsca 13495   .icip 13497  ℂfldccnfld 16666   PreHilcphl 16818   normcnm 18585  NrmModcnlm 18589   CPreHilccph 19090
This theorem is referenced by:  cphphl  19095  cphnlm  19096  cphsca  19103  cphsqrcl  19108  cphnmfval  19116  tchcph  19155
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-nul 4306
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-sbc 3130  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-br 4181  df-opab 4235  df-mpt 4236  df-xp 4851  df-cnv 4853  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fv 5429  df-ov 6051  df-cph 19092
  Copyright terms: Public domain W3C validator