Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscrngo Unicode version

Theorem iscrngo 26622
Description: The predicate "is a commutative ring". (Contributed by Jeff Madsen, 8-Jun-2010.)
Assertion
Ref Expression
iscrngo  |-  ( R  e. CRingOps 
<->  ( R  e.  RingOps  /\  R  e.  Com2 ) )

Proof of Theorem iscrngo
StepHypRef Expression
1 df-crngo 26621 . 2  |- CRingOps  =  (
RingOps  i^i  Com2 )
21elin2 3359 1  |-  ( R  e. CRingOps 
<->  ( R  e.  RingOps  /\  R  e.  Com2 ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    e. wcel 1684   RingOpscrngo 21042   Com2ccm2 21077  CRingOpsccring 26620
This theorem is referenced by:  iscrngo2  26623  iscringd  26624  crngorngo  26625  fldcrng  26629  isfld2  26630  isdmn2  26680
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-in 3159  df-crngo 26621
  Copyright terms: Public domain W3C validator