Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscvm Unicode version

Theorem iscvm 23790
Description: The property of being a covering map. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypotheses
Ref Expression
iscvm.1  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) } )
iscvm.2  |-  X  = 
U. J
Assertion
Ref Expression
iscvm  |-  ( F  e.  ( C CovMap  J
)  <->  ( ( C  e.  Top  /\  J  e.  Top  /\  F  e.  ( C  Cn  J
) )  /\  A. x  e.  X  E. k  e.  J  (
x  e.  k  /\  ( S `  k )  =/=  (/) ) ) )
Distinct variable groups:    k, s, u, v, x    C, k, s, u, x    x, X    k, F, s, u, x    k, J, s, u, x
Allowed substitution hints:    C( v)    S( x, v, u, k, s)    F( v)    J( v)    X( v, u, k, s)

Proof of Theorem iscvm
Dummy variables  c 
f  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anass 630 . 2  |-  ( ( ( ( C  e. 
Top  /\  J  e.  Top )  /\  F  e.  ( C  Cn  J
) )  /\  A. x  e.  X  E. k  e.  J  (
x  e.  k  /\  ( S `  k )  =/=  (/) ) )  <->  ( ( C  e.  Top  /\  J  e.  Top )  /\  ( F  e.  ( C  Cn  J )  /\  A. x  e.  X  E. k  e.  J  (
x  e.  k  /\  ( S `  k )  =/=  (/) ) ) ) )
2 df-3an 936 . . 3  |-  ( ( C  e.  Top  /\  J  e.  Top  /\  F  e.  ( C  Cn  J
) )  <->  ( ( C  e.  Top  /\  J  e.  Top )  /\  F  e.  ( C  Cn  J
) ) )
32anbi1i 676 . 2  |-  ( ( ( C  e.  Top  /\  J  e.  Top  /\  F  e.  ( C  Cn  J ) )  /\  A. x  e.  X  E. k  e.  J  (
x  e.  k  /\  ( S `  k )  =/=  (/) ) )  <->  ( (
( C  e.  Top  /\  J  e.  Top )  /\  F  e.  ( C  Cn  J ) )  /\  A. x  e.  X  E. k  e.  J  ( x  e.  k  /\  ( S `
 k )  =/=  (/) ) ) )
4 df-cvm 23787 . . . 4  |- CovMap  =  ( c  e.  Top , 
j  e.  Top  |->  { f  e.  ( c  Cn  j )  | 
A. x  e.  U. j E. k  e.  j  ( x  e.  k  /\  E. s  e.  ( ~P c  \  { (/) } ) ( U. s  =  ( `' f " k
)  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v
)  =  (/)  /\  (
f  |`  u )  e.  ( ( ct  u ) 
Homeo  ( jt  k ) ) ) ) ) } )
54elmpt2cl 6061 . . 3  |-  ( F  e.  ( C CovMap  J
)  ->  ( C  e.  Top  /\  J  e. 
Top ) )
6 oveq12 5867 . . . . . . 7  |-  ( ( c  =  C  /\  j  =  J )  ->  ( c  Cn  j
)  =  ( C  Cn  J ) )
7 simpr 447 . . . . . . . . . 10  |-  ( ( c  =  C  /\  j  =  J )  ->  j  =  J )
87unieqd 3838 . . . . . . . . 9  |-  ( ( c  =  C  /\  j  =  J )  ->  U. j  =  U. J )
9 iscvm.2 . . . . . . . . 9  |-  X  = 
U. J
108, 9syl6eqr 2333 . . . . . . . 8  |-  ( ( c  =  C  /\  j  =  J )  ->  U. j  =  X )
11 simpl 443 . . . . . . . . . . . . 13  |-  ( ( c  =  C  /\  j  =  J )  ->  c  =  C )
1211pweqd 3630 . . . . . . . . . . . 12  |-  ( ( c  =  C  /\  j  =  J )  ->  ~P c  =  ~P C )
1312difeq1d 3293 . . . . . . . . . . 11  |-  ( ( c  =  C  /\  j  =  J )  ->  ( ~P c  \  { (/) } )  =  ( ~P C  \  { (/) } ) )
14 oveq1 5865 . . . . . . . . . . . . . . . 16  |-  ( c  =  C  ->  (
ct  u )  =  ( Ct  u ) )
15 oveq1 5865 . . . . . . . . . . . . . . . 16  |-  ( j  =  J  ->  (
jt  k )  =  ( Jt  k ) )
1614, 15oveqan12d 5877 . . . . . . . . . . . . . . 15  |-  ( ( c  =  C  /\  j  =  J )  ->  ( ( ct  u ) 
Homeo  ( jt  k ) )  =  ( ( Ct  u )  Homeo  ( Jt  k
) ) )
1716eleq2d 2350 . . . . . . . . . . . . . 14  |-  ( ( c  =  C  /\  j  =  J )  ->  ( ( f  |`  u )  e.  ( ( ct  u )  Homeo  ( jt  k ) )  <->  ( f  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) )
1817anbi2d 684 . . . . . . . . . . . . 13  |-  ( ( c  =  C  /\  j  =  J )  ->  ( ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  (
f  |`  u )  e.  ( ( ct  u ) 
Homeo  ( jt  k ) ) )  <->  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  (
f  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) )
1918ralbidv 2563 . . . . . . . . . . . 12  |-  ( ( c  =  C  /\  j  =  J )  ->  ( A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  (
f  |`  u )  e.  ( ( ct  u ) 
Homeo  ( jt  k ) ) )  <->  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  (
f  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) )
2019anbi2d 684 . . . . . . . . . . 11  |-  ( ( c  =  C  /\  j  =  J )  ->  ( ( U. s  =  ( `' f
" k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( f  |`  u )  e.  ( ( ct  u )  Homeo  ( jt  k ) ) ) )  <-> 
( U. s  =  ( `' f "
k )  /\  A. u  e.  s  ( A. v  e.  (
s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( f  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) ) )
2113, 20rexeqbidv 2749 . . . . . . . . . 10  |-  ( ( c  =  C  /\  j  =  J )  ->  ( E. s  e.  ( ~P c  \  { (/) } ) ( U. s  =  ( `' f " k
)  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v
)  =  (/)  /\  (
f  |`  u )  e.  ( ( ct  u ) 
Homeo  ( jt  k ) ) ) )  <->  E. s  e.  ( ~P C  \  { (/) } ) ( U. s  =  ( `' f " k
)  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v
)  =  (/)  /\  (
f  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) ) )
2221anbi2d 684 . . . . . . . . 9  |-  ( ( c  =  C  /\  j  =  J )  ->  ( ( x  e.  k  /\  E. s  e.  ( ~P c  \  { (/) } ) ( U. s  =  ( `' f " k
)  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v
)  =  (/)  /\  (
f  |`  u )  e.  ( ( ct  u ) 
Homeo  ( jt  k ) ) ) ) )  <->  ( x  e.  k  /\  E. s  e.  ( ~P C  \  { (/) } ) ( U. s  =  ( `' f " k
)  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v
)  =  (/)  /\  (
f  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) ) ) )
237, 22rexeqbidv 2749 . . . . . . . 8  |-  ( ( c  =  C  /\  j  =  J )  ->  ( E. k  e.  j  ( x  e.  k  /\  E. s  e.  ( ~P c  \  { (/) } ) ( U. s  =  ( `' f " k
)  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v
)  =  (/)  /\  (
f  |`  u )  e.  ( ( ct  u ) 
Homeo  ( jt  k ) ) ) ) )  <->  E. k  e.  J  ( x  e.  k  /\  E. s  e.  ( ~P C  \  { (/) } ) ( U. s  =  ( `' f " k
)  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v
)  =  (/)  /\  (
f  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) ) ) )
2410, 23raleqbidv 2748 . . . . . . 7  |-  ( ( c  =  C  /\  j  =  J )  ->  ( A. x  e. 
U. j E. k  e.  j  ( x  e.  k  /\  E. s  e.  ( ~P c  \  { (/) } ) ( U. s  =  ( `' f " k
)  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v
)  =  (/)  /\  (
f  |`  u )  e.  ( ( ct  u ) 
Homeo  ( jt  k ) ) ) ) )  <->  A. x  e.  X  E. k  e.  J  ( x  e.  k  /\  E. s  e.  ( ~P C  \  { (/) } ) ( U. s  =  ( `' f " k
)  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v
)  =  (/)  /\  (
f  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) ) ) )
256, 24rabeqbidv 2783 . . . . . 6  |-  ( ( c  =  C  /\  j  =  J )  ->  { f  e.  ( c  Cn  j )  |  A. x  e. 
U. j E. k  e.  j  ( x  e.  k  /\  E. s  e.  ( ~P c  \  { (/) } ) ( U. s  =  ( `' f " k
)  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v
)  =  (/)  /\  (
f  |`  u )  e.  ( ( ct  u ) 
Homeo  ( jt  k ) ) ) ) ) }  =  { f  e.  ( C  Cn  J
)  |  A. x  e.  X  E. k  e.  J  ( x  e.  k  /\  E. s  e.  ( ~P C  \  { (/) } ) ( U. s  =  ( `' f " k
)  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v
)  =  (/)  /\  (
f  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) ) } )
26 ovex 5883 . . . . . . 7  |-  ( C  Cn  J )  e. 
_V
2726rabex 4165 . . . . . 6  |-  { f  e.  ( C  Cn  J )  |  A. x  e.  X  E. k  e.  J  (
x  e.  k  /\  E. s  e.  ( ~P C  \  { (/) } ) ( U. s  =  ( `' f
" k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( f  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) ) }  e.  _V
2825, 4, 27ovmpt2a 5978 . . . . 5  |-  ( ( C  e.  Top  /\  J  e.  Top )  ->  ( C CovMap  J )  =  { f  e.  ( C  Cn  J
)  |  A. x  e.  X  E. k  e.  J  ( x  e.  k  /\  E. s  e.  ( ~P C  \  { (/) } ) ( U. s  =  ( `' f " k
)  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v
)  =  (/)  /\  (
f  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) ) } )
2928eleq2d 2350 . . . 4  |-  ( ( C  e.  Top  /\  J  e.  Top )  ->  ( F  e.  ( C CovMap  J )  <->  F  e.  { f  e.  ( C  Cn  J )  | 
A. x  e.  X  E. k  e.  J  ( x  e.  k  /\  E. s  e.  ( ~P C  \  { (/)
} ) ( U. s  =  ( `' f " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( f  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) ) } ) )
30 id 19 . . . . . . . . . . . 12  |-  ( k  e.  J  ->  k  e.  J )
31 pwexg 4194 . . . . . . . . . . . . . 14  |-  ( C  e.  Top  ->  ~P C  e.  _V )
3231adantr 451 . . . . . . . . . . . . 13  |-  ( ( C  e.  Top  /\  J  e.  Top )  ->  ~P C  e.  _V )
33 difexg 4162 . . . . . . . . . . . . 13  |-  ( ~P C  e.  _V  ->  ( ~P C  \  { (/)
} )  e.  _V )
34 rabexg 4164 . . . . . . . . . . . . 13  |-  ( ( ~P C  \  { (/)
} )  e.  _V  ->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) }  e.  _V )
3532, 33, 343syl 18 . . . . . . . . . . . 12  |-  ( ( C  e.  Top  /\  J  e.  Top )  ->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) }  e.  _V )
36 iscvm.1 . . . . . . . . . . . . 13  |-  S  =  ( k  e.  J  |->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) } )
3736fvmpt2 5608 . . . . . . . . . . . 12  |-  ( ( k  e.  J  /\  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }  e.  _V )  ->  ( S `  k
)  =  { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F "
k )  /\  A. u  e.  s  ( A. v  e.  (
s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) } )
3830, 35, 37syl2anr 464 . . . . . . . . . . 11  |-  ( ( ( C  e.  Top  /\  J  e.  Top )  /\  k  e.  J
)  ->  ( S `  k )  =  {
s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) } )
3938neeq1d 2459 . . . . . . . . . 10  |-  ( ( ( C  e.  Top  /\  J  e.  Top )  /\  k  e.  J
)  ->  ( ( S `  k )  =/=  (/)  <->  { s  e.  ( ~P C  \  { (/)
} )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) }  =/=  (/) ) )
40 rabn0 3474 . . . . . . . . . 10  |-  ( { s  e.  ( ~P C  \  { (/) } )  |  ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) }  =/=  (/)  <->  E. s  e.  ( ~P C  \  { (/) } ) ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) )
4139, 40syl6bb 252 . . . . . . . . 9  |-  ( ( ( C  e.  Top  /\  J  e.  Top )  /\  k  e.  J
)  ->  ( ( S `  k )  =/=  (/)  <->  E. s  e.  ( ~P C  \  { (/)
} ) ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) ) )
4241anbi2d 684 . . . . . . . 8  |-  ( ( ( C  e.  Top  /\  J  e.  Top )  /\  k  e.  J
)  ->  ( (
x  e.  k  /\  ( S `  k )  =/=  (/) )  <->  ( x  e.  k  /\  E. s  e.  ( ~P C  \  { (/) } ) ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) ) ) )
4342rexbidva 2560 . . . . . . 7  |-  ( ( C  e.  Top  /\  J  e.  Top )  ->  ( E. k  e.  J  ( x  e.  k  /\  ( S `
 k )  =/=  (/) )  <->  E. k  e.  J  ( x  e.  k  /\  E. s  e.  ( ~P C  \  { (/)
} ) ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) ) ) )
4443ralbidv 2563 . . . . . 6  |-  ( ( C  e.  Top  /\  J  e.  Top )  ->  ( A. x  e.  X  E. k  e.  J  ( x  e.  k  /\  ( S `
 k )  =/=  (/) )  <->  A. x  e.  X  E. k  e.  J  ( x  e.  k  /\  E. s  e.  ( ~P C  \  { (/)
} ) ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) ) ) )
4544anbi2d 684 . . . . 5  |-  ( ( C  e.  Top  /\  J  e.  Top )  ->  ( ( F  e.  ( C  Cn  J
)  /\  A. x  e.  X  E. k  e.  J  ( x  e.  k  /\  ( S `  k )  =/=  (/) ) )  <->  ( F  e.  ( C  Cn  J
)  /\  A. x  e.  X  E. k  e.  J  ( x  e.  k  /\  E. s  e.  ( ~P C  \  { (/) } ) ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) ) ) ) )
46 cnveq 4855 . . . . . . . . . . . . 13  |-  ( f  =  F  ->  `' f  =  `' F
)
4746imaeq1d 5011 . . . . . . . . . . . 12  |-  ( f  =  F  ->  ( `' f " k
)  =  ( `' F " k ) )
4847eqeq2d 2294 . . . . . . . . . . 11  |-  ( f  =  F  ->  ( U. s  =  ( `' f " k
)  <->  U. s  =  ( `' F " k ) ) )
49 reseq1 4949 . . . . . . . . . . . . . 14  |-  ( f  =  F  ->  (
f  |`  u )  =  ( F  |`  u
) )
5049eleq1d 2349 . . . . . . . . . . . . 13  |-  ( f  =  F  ->  (
( f  |`  u
)  e.  ( ( Ct  u )  Homeo  ( Jt  k ) )  <->  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) )
5150anbi2d 684 . . . . . . . . . . . 12  |-  ( f  =  F  ->  (
( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  (
f  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) )  <->  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) )
5251ralbidv 2563 . . . . . . . . . . 11  |-  ( f  =  F  ->  ( A. u  e.  s 
( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  (
f  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) )  <->  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) )
5348, 52anbi12d 691 . . . . . . . . . 10  |-  ( f  =  F  ->  (
( U. s  =  ( `' f "
k )  /\  A. u  e.  s  ( A. v  e.  (
s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( f  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) )  <-> 
( U. s  =  ( `' F "
k )  /\  A. u  e.  s  ( A. v  e.  (
s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) ) )
5453rexbidv 2564 . . . . . . . . 9  |-  ( f  =  F  ->  ( E. s  e.  ( ~P C  \  { (/) } ) ( U. s  =  ( `' f
" k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( f  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) )  <->  E. s  e.  ( ~P C  \  { (/) } ) ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  (
s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) ) )
5554anbi2d 684 . . . . . . . 8  |-  ( f  =  F  ->  (
( x  e.  k  /\  E. s  e.  ( ~P C  \  { (/) } ) ( U. s  =  ( `' f " k
)  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v
)  =  (/)  /\  (
f  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) )  <->  ( x  e.  k  /\  E. s  e.  ( ~P C  \  { (/) } ) ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) ) ) )
5655rexbidv 2564 . . . . . . 7  |-  ( f  =  F  ->  ( E. k  e.  J  ( x  e.  k  /\  E. s  e.  ( ~P C  \  { (/)
} ) ( U. s  =  ( `' f " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( f  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) )  <->  E. k  e.  J  ( x  e.  k  /\  E. s  e.  ( ~P C  \  { (/)
} ) ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) ) ) )
5756ralbidv 2563 . . . . . 6  |-  ( f  =  F  ->  ( A. x  e.  X  E. k  e.  J  ( x  e.  k  /\  E. s  e.  ( ~P C  \  { (/)
} ) ( U. s  =  ( `' f " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( f  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) )  <->  A. x  e.  X  E. k  e.  J  ( x  e.  k  /\  E. s  e.  ( ~P C  \  { (/)
} ) ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) ) ) )
5857elrab 2923 . . . . 5  |-  ( F  e.  { f  e.  ( C  Cn  J
)  |  A. x  e.  X  E. k  e.  J  ( x  e.  k  /\  E. s  e.  ( ~P C  \  { (/) } ) ( U. s  =  ( `' f " k
)  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v
)  =  (/)  /\  (
f  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) ) }  <-> 
( F  e.  ( C  Cn  J )  /\  A. x  e.  X  E. k  e.  J  ( x  e.  k  /\  E. s  e.  ( ~P C  \  { (/) } ) ( U. s  =  ( `' F " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  {
u } ) ( u  i^i  v )  =  (/)  /\  ( F  |`  u )  e.  ( ( Ct  u ) 
Homeo  ( Jt  k ) ) ) ) ) ) )
5945, 58syl6bbr 254 . . . 4  |-  ( ( C  e.  Top  /\  J  e.  Top )  ->  ( ( F  e.  ( C  Cn  J
)  /\  A. x  e.  X  E. k  e.  J  ( x  e.  k  /\  ( S `  k )  =/=  (/) ) )  <->  F  e.  { f  e.  ( C  Cn  J )  | 
A. x  e.  X  E. k  e.  J  ( x  e.  k  /\  E. s  e.  ( ~P C  \  { (/)
} ) ( U. s  =  ( `' f " k )  /\  A. u  e.  s  ( A. v  e.  ( s  \  { u } ) ( u  i^i  v )  =  (/)  /\  ( f  |`  u )  e.  ( ( Ct  u )  Homeo  ( Jt  k ) ) ) ) ) } ) )
6029, 59bitr4d 247 . . 3  |-  ( ( C  e.  Top  /\  J  e.  Top )  ->  ( F  e.  ( C CovMap  J )  <->  ( F  e.  ( C  Cn  J
)  /\  A. x  e.  X  E. k  e.  J  ( x  e.  k  /\  ( S `  k )  =/=  (/) ) ) ) )
615, 60biadan2 623 . 2  |-  ( F  e.  ( C CovMap  J
)  <->  ( ( C  e.  Top  /\  J  e.  Top )  /\  ( F  e.  ( C  Cn  J )  /\  A. x  e.  X  E. k  e.  J  (
x  e.  k  /\  ( S `  k )  =/=  (/) ) ) ) )
621, 3, 613bitr4ri 269 1  |-  ( F  e.  ( C CovMap  J
)  <->  ( ( C  e.  Top  /\  J  e.  Top  /\  F  e.  ( C  Cn  J
) )  /\  A. x  e.  X  E. k  e.  J  (
x  e.  k  /\  ( S `  k )  =/=  (/) ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   {crab 2547   _Vcvv 2788    \ cdif 3149    i^i cin 3151   (/)c0 3455   ~Pcpw 3625   {csn 3640   U.cuni 3827    e. cmpt 4077   `'ccnv 4688    |` cres 4691   "cima 4692   ` cfv 5255  (class class class)co 5858   ↾t crest 13325   Topctop 16631    Cn ccn 16954    Homeo chmeo 17444   CovMap ccvm 23786
This theorem is referenced by:  cvmcn  23793  cvmcov  23794
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-cvm 23787
  Copyright terms: Public domain W3C validator