MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscyg Structured version   Unicode version

Theorem iscyg 15481
Description: Definition of a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
iscyg.1  |-  B  =  ( Base `  G
)
iscyg.2  |-  .x.  =  (.g
`  G )
Assertion
Ref Expression
iscyg  |-  ( G  e. CycGrp 
<->  ( G  e.  Grp  /\ 
E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B ) )
Distinct variable groups:    x, n, B    n, G, x    .x. , n, x

Proof of Theorem iscyg
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 fveq2 5720 . . . 4  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
2 iscyg.1 . . . 4  |-  B  =  ( Base `  G
)
31, 2syl6eqr 2485 . . 3  |-  ( g  =  G  ->  ( Base `  g )  =  B )
4 fveq2 5720 . . . . . . . 8  |-  ( g  =  G  ->  (.g `  g )  =  (.g `  G ) )
5 iscyg.2 . . . . . . . 8  |-  .x.  =  (.g
`  G )
64, 5syl6eqr 2485 . . . . . . 7  |-  ( g  =  G  ->  (.g `  g )  =  .x.  )
76oveqd 6090 . . . . . 6  |-  ( g  =  G  ->  (
n (.g `  g ) x )  =  ( n 
.x.  x ) )
87mpteq2dv 4288 . . . . 5  |-  ( g  =  G  ->  (
n  e.  ZZ  |->  ( n (.g `  g ) x ) )  =  ( n  e.  ZZ  |->  ( n  .x.  x ) ) )
98rneqd 5089 . . . 4  |-  ( g  =  G  ->  ran  ( n  e.  ZZ  |->  ( n (.g `  g
) x ) )  =  ran  ( n  e.  ZZ  |->  ( n 
.x.  x ) ) )
109, 3eqeq12d 2449 . . 3  |-  ( g  =  G  ->  ( ran  ( n  e.  ZZ  |->  ( n (.g `  g
) x ) )  =  ( Base `  g
)  <->  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B ) )
113, 10rexeqbidv 2909 . 2  |-  ( g  =  G  ->  ( E. x  e.  ( Base `  g ) ran  ( n  e.  ZZ  |->  ( n (.g `  g
) x ) )  =  ( Base `  g
)  <->  E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B ) )
12 df-cyg 15480 . 2  |- CycGrp  =  {
g  e.  Grp  |  E. x  e.  ( Base `  g ) ran  ( n  e.  ZZ  |->  ( n (.g `  g
) x ) )  =  ( Base `  g
) }
1311, 12elrab2 3086 1  |-  ( G  e. CycGrp 
<->  ( G  e.  Grp  /\ 
E. x  e.  B  ran  ( n  e.  ZZ  |->  ( n  .x.  x ) )  =  B ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2698    e. cmpt 4258   ran crn 4871   ` cfv 5446  (class class class)co 6073   ZZcz 10274   Basecbs 13461   Grpcgrp 14677  .gcmg 14681  CycGrpccyg 15479
This theorem is referenced by:  iscyg2  15484  iscyg3  15488  cyggrp  15491  cygctb  15493  ghmcyg  15497  ablfac2  15639  zncyg  16821
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-cnv 4878  df-dm 4880  df-rn 4881  df-iota 5410  df-fv 5454  df-ov 6076  df-cyg 15480
  Copyright terms: Public domain W3C validator