Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdmn3 Structured version   Unicode version

Theorem isdmn3 26722
Description: The predicate "is a domain", alternate expression. (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
isdmn3.1  |-  G  =  ( 1st `  R
)
isdmn3.2  |-  H  =  ( 2nd `  R
)
isdmn3.3  |-  X  =  ran  G
isdmn3.4  |-  Z  =  (GId `  G )
isdmn3.5  |-  U  =  (GId `  H )
Assertion
Ref Expression
isdmn3  |-  ( R  e.  Dmn  <->  ( R  e. CRingOps 
/\  U  =/=  Z  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  =  Z  ->  ( a  =  Z  \/  b  =  Z ) ) ) )
Distinct variable groups:    R, a,
b    Z, a, b    H, a, b    X, a, b
Allowed substitution hints:    U( a, b)    G( a, b)

Proof of Theorem isdmn3
StepHypRef Expression
1 isdmn2 26703 . 2  |-  ( R  e.  Dmn  <->  ( R  e.  PrRing  /\  R  e. CRingOps ) )
2 isdmn3.1 . . . . . 6  |-  G  =  ( 1st `  R
)
3 isdmn3.4 . . . . . 6  |-  Z  =  (GId `  G )
42, 3isprrngo 26698 . . . . 5  |-  ( R  e.  PrRing 
<->  ( R  e.  RingOps  /\  { Z }  e.  (
PrIdl `  R ) ) )
5 isdmn3.2 . . . . . . 7  |-  H  =  ( 2nd `  R
)
6 isdmn3.3 . . . . . . 7  |-  X  =  ran  G
72, 5, 6ispridlc 26718 . . . . . 6  |-  ( R  e. CRingOps  ->  ( { Z }  e.  ( PrIdl `  R )  <->  ( { Z }  e.  ( Idl `  R )  /\  { Z }  =/=  X  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  e.  { Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) ) ) ) )
8 crngorngo 26648 . . . . . . 7  |-  ( R  e. CRingOps  ->  R  e.  RingOps )
98biantrurd 496 . . . . . 6  |-  ( R  e. CRingOps  ->  ( { Z }  e.  ( PrIdl `  R )  <->  ( R  e.  RingOps  /\  { Z }  e.  ( PrIdl `  R ) ) ) )
10 3anass 941 . . . . . . 7  |-  ( ( { Z }  e.  ( Idl `  R )  /\  { Z }  =/=  X  /\  A. a  e.  X  A. b  e.  X  ( (
a H b )  e.  { Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) ) )  <->  ( { Z }  e.  ( Idl `  R )  /\  ( { Z }  =/=  X  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  e. 
{ Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) ) ) ) )
112, 30idl 26673 . . . . . . . . . 10  |-  ( R  e.  RingOps  ->  { Z }  e.  ( Idl `  R
) )
128, 11syl 16 . . . . . . . . 9  |-  ( R  e. CRingOps  ->  { Z }  e.  ( Idl `  R
) )
1312biantrurd 496 . . . . . . . 8  |-  ( R  e. CRingOps  ->  ( ( { Z }  =/=  X  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  e.  { Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) ) )  <-> 
( { Z }  e.  ( Idl `  R
)  /\  ( { Z }  =/=  X  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  e.  { Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) ) ) ) ) )
142rneqi 5125 . . . . . . . . . . . . . . 15  |-  ran  G  =  ran  ( 1st `  R
)
156, 14eqtri 2462 . . . . . . . . . . . . . 14  |-  X  =  ran  ( 1st `  R
)
16 isdmn3.5 . . . . . . . . . . . . . 14  |-  U  =  (GId `  H )
1715, 5, 16rngo1cl 22048 . . . . . . . . . . . . 13  |-  ( R  e.  RingOps  ->  U  e.  X
)
18 eleq2 2503 . . . . . . . . . . . . . 14  |-  ( { Z }  =  X  ->  ( U  e. 
{ Z }  <->  U  e.  X ) )
19 elsni 3862 . . . . . . . . . . . . . 14  |-  ( U  e.  { Z }  ->  U  =  Z )
2018, 19syl6bir 222 . . . . . . . . . . . . 13  |-  ( { Z }  =  X  ->  ( U  e.  X  ->  U  =  Z ) )
2117, 20syl5com 29 . . . . . . . . . . . 12  |-  ( R  e.  RingOps  ->  ( { Z }  =  X  ->  U  =  Z ) )
222, 5, 3, 16, 6rngoueqz 22049 . . . . . . . . . . . . 13  |-  ( R  e.  RingOps  ->  ( X  ~~  1o 
<->  U  =  Z ) )
232, 6, 3rngo0cl 22017 . . . . . . . . . . . . . 14  |-  ( R  e.  RingOps  ->  Z  e.  X
)
24 en1eqsn 7367 . . . . . . . . . . . . . . . 16  |-  ( ( Z  e.  X  /\  X  ~~  1o )  ->  X  =  { Z } )
2524eqcomd 2447 . . . . . . . . . . . . . . 15  |-  ( ( Z  e.  X  /\  X  ~~  1o )  ->  { Z }  =  X )
2625ex 425 . . . . . . . . . . . . . 14  |-  ( Z  e.  X  ->  ( X  ~~  1o  ->  { Z }  =  X )
)
2723, 26syl 16 . . . . . . . . . . . . 13  |-  ( R  e.  RingOps  ->  ( X  ~~  1o  ->  { Z }  =  X ) )
2822, 27sylbird 228 . . . . . . . . . . . 12  |-  ( R  e.  RingOps  ->  ( U  =  Z  ->  { Z }  =  X )
)
2921, 28impbid 185 . . . . . . . . . . 11  |-  ( R  e.  RingOps  ->  ( { Z }  =  X  <->  U  =  Z ) )
308, 29syl 16 . . . . . . . . . 10  |-  ( R  e. CRingOps  ->  ( { Z }  =  X  <->  U  =  Z ) )
3130necon3bid 2642 . . . . . . . . 9  |-  ( R  e. CRingOps  ->  ( { Z }  =/=  X  <->  U  =/=  Z ) )
32 ovex 6135 . . . . . . . . . . . . 13  |-  ( a H b )  e. 
_V
3332elsnc 3861 . . . . . . . . . . . 12  |-  ( ( a H b )  e.  { Z }  <->  ( a H b )  =  Z )
34 elsn 3853 . . . . . . . . . . . . 13  |-  ( a  e.  { Z }  <->  a  =  Z )
35 elsn 3853 . . . . . . . . . . . . 13  |-  ( b  e.  { Z }  <->  b  =  Z )
3634, 35orbi12i 509 . . . . . . . . . . . 12  |-  ( ( a  e.  { Z }  \/  b  e.  { Z } )  <->  ( a  =  Z  \/  b  =  Z ) )
3733, 36imbi12i 318 . . . . . . . . . . 11  |-  ( ( ( a H b )  e.  { Z }  ->  ( a  e. 
{ Z }  \/  b  e.  { Z } ) )  <->  ( (
a H b )  =  Z  ->  (
a  =  Z  \/  b  =  Z )
) )
3837a1i 11 . . . . . . . . . 10  |-  ( R  e. CRingOps  ->  ( ( ( a H b )  e.  { Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) )  <->  ( ( a H b )  =  Z  ->  ( a  =  Z  \/  b  =  Z ) ) ) )
39382ralbidv 2753 . . . . . . . . 9  |-  ( R  e. CRingOps  ->  ( A. a  e.  X  A. b  e.  X  ( (
a H b )  e.  { Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) )  <->  A. a  e.  X  A. b  e.  X  ( ( a H b )  =  Z  ->  ( a  =  Z  \/  b  =  Z ) ) ) )
4031, 39anbi12d 693 . . . . . . . 8  |-  ( R  e. CRingOps  ->  ( ( { Z }  =/=  X  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  e.  { Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) ) )  <-> 
( U  =/=  Z  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  =  Z  ->  ( a  =  Z  \/  b  =  Z ) ) ) ) )
4113, 40bitr3d 248 . . . . . . 7  |-  ( R  e. CRingOps  ->  ( ( { Z }  e.  ( Idl `  R )  /\  ( { Z }  =/=  X  /\  A. a  e.  X  A. b  e.  X  (
( a H b )  e.  { Z }  ->  ( a  e. 
{ Z }  \/  b  e.  { Z } ) ) ) )  <->  ( U  =/= 
Z  /\  A. a  e.  X  A. b  e.  X  ( (
a H b )  =  Z  ->  (
a  =  Z  \/  b  =  Z )
) ) ) )
4210, 41syl5bb 250 . . . . . 6  |-  ( R  e. CRingOps  ->  ( ( { Z }  e.  ( Idl `  R )  /\  { Z }  =/=  X  /\  A. a  e.  X  A. b  e.  X  ( (
a H b )  e.  { Z }  ->  ( a  e.  { Z }  \/  b  e.  { Z } ) ) )  <->  ( U  =/=  Z  /\  A. a  e.  X  A. b  e.  X  ( (
a H b )  =  Z  ->  (
a  =  Z  \/  b  =  Z )
) ) ) )
437, 9, 423bitr3d 276 . . . . 5  |-  ( R  e. CRingOps  ->  ( ( R  e.  RingOps  /\  { Z }  e.  ( PrIdl `  R ) )  <->  ( U  =/=  Z  /\  A. a  e.  X  A. b  e.  X  ( (
a H b )  =  Z  ->  (
a  =  Z  \/  b  =  Z )
) ) ) )
444, 43syl5bb 250 . . . 4  |-  ( R  e. CRingOps  ->  ( R  e. 
PrRing 
<->  ( U  =/=  Z  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  =  Z  ->  ( a  =  Z  \/  b  =  Z ) ) ) ) )
4544pm5.32i 620 . . 3  |-  ( ( R  e. CRingOps  /\  R  e. 
PrRing )  <->  ( R  e. CRingOps  /\  ( U  =/=  Z  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  =  Z  ->  ( a  =  Z  \/  b  =  Z ) ) ) ) )
46 ancom 439 . . 3  |-  ( ( R  e.  PrRing  /\  R  e. CRingOps )  <->  ( R  e. CRingOps  /\  R  e.  PrRing ) )
47 3anass 941 . . 3  |-  ( ( R  e. CRingOps  /\  U  =/= 
Z  /\  A. a  e.  X  A. b  e.  X  ( (
a H b )  =  Z  ->  (
a  =  Z  \/  b  =  Z )
) )  <->  ( R  e. CRingOps 
/\  ( U  =/= 
Z  /\  A. a  e.  X  A. b  e.  X  ( (
a H b )  =  Z  ->  (
a  =  Z  \/  b  =  Z )
) ) ) )
4845, 46, 473bitr4i 270 . 2  |-  ( ( R  e.  PrRing  /\  R  e. CRingOps )  <->  ( R  e. CRingOps  /\  U  =/=  Z  /\  A. a  e.  X  A. b  e.  X  (
( a H b )  =  Z  -> 
( a  =  Z  \/  b  =  Z ) ) ) )
491, 48bitri 242 1  |-  ( R  e.  Dmn  <->  ( R  e. CRingOps 
/\  U  =/=  Z  /\  A. a  e.  X  A. b  e.  X  ( ( a H b )  =  Z  ->  ( a  =  Z  \/  b  =  Z ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1727    =/= wne 2605   A.wral 2711   {csn 3838   class class class wbr 4237   ran crn 4908   ` cfv 5483  (class class class)co 6110   1stc1st 6376   2ndc2nd 6377   1oc1o 6746    ~~ cen 7135  GIdcgi 21806   RingOpscrngo 21994  CRingOpsccring 26643   Idlcidl 26655   PrIdlcpridl 26656   PrRingcprrng 26694   Dmncdmn 26695
This theorem is referenced by:  dmnnzd  26723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-riota 6578  df-1o 6753  df-er 6934  df-en 7139  df-dom 7140  df-sdom 7141  df-fin 7142  df-grpo 21810  df-gid 21811  df-ginv 21812  df-ablo 21901  df-ass 21932  df-exid 21934  df-mgm 21938  df-sgr 21950  df-mndo 21957  df-rngo 21995  df-com2 22030  df-crngo 26644  df-idl 26658  df-pridl 26659  df-prrngo 26696  df-dmn 26697  df-igen 26708
  Copyright terms: Public domain W3C validator