MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdomn Structured version   Unicode version

Theorem isdomn 16385
Description: Expand definition of a domain. (Contributed by Mario Carneiro, 28-Mar-2015.)
Hypotheses
Ref Expression
isdomn.b  |-  B  =  ( Base `  R
)
isdomn.t  |-  .x.  =  ( .r `  R )
isdomn.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
isdomn  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  (
( x  .x.  y
)  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) ) )
Distinct variable groups:    x, B, y    x, R, y    x,  .0. , y
Allowed substitution hints:    .x. ( x, y)

Proof of Theorem isdomn
Dummy variables  b 
r  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 5771 . . . 4  |-  ( Base `  r )  e.  _V
21a1i 11 . . 3  |-  ( r  =  R  ->  ( Base `  r )  e. 
_V )
3 fveq2 5757 . . . 4  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
4 isdomn.b . . . 4  |-  B  =  ( Base `  R
)
53, 4syl6eqr 2492 . . 3  |-  ( r  =  R  ->  ( Base `  r )  =  B )
6 fvex 5771 . . . . 5  |-  ( 0g
`  r )  e. 
_V
76a1i 11 . . . 4  |-  ( ( r  =  R  /\  b  =  B )  ->  ( 0g `  r
)  e.  _V )
8 fveq2 5757 . . . . . 6  |-  ( r  =  R  ->  ( 0g `  r )  =  ( 0g `  R
) )
98adantr 453 . . . . 5  |-  ( ( r  =  R  /\  b  =  B )  ->  ( 0g `  r
)  =  ( 0g
`  R ) )
10 isdomn.z . . . . 5  |-  .0.  =  ( 0g `  R )
119, 10syl6eqr 2492 . . . 4  |-  ( ( r  =  R  /\  b  =  B )  ->  ( 0g `  r
)  =  .0.  )
12 simplr 733 . . . . 5  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  b  =  B )
13 fveq2 5757 . . . . . . . . . 10  |-  ( r  =  R  ->  ( .r `  r )  =  ( .r `  R
) )
14 isdomn.t . . . . . . . . . 10  |-  .x.  =  ( .r `  R )
1513, 14syl6eqr 2492 . . . . . . . . 9  |-  ( r  =  R  ->  ( .r `  r )  = 
.x.  )
1615proplem3 13947 . . . . . . . 8  |-  ( ( r  =  R  /\  b  =  B )  ->  ( x ( .r
`  r ) y )  =  ( x 
.x.  y ) )
17 id 21 . . . . . . . 8  |-  ( z  =  .0.  ->  z  =  .0.  )
1816, 17eqeqan12d 2457 . . . . . . 7  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  (
( x ( .r
`  r ) y )  =  z  <->  ( x  .x.  y )  =  .0.  ) )
19 eqeq2 2451 . . . . . . . . 9  |-  ( z  =  .0.  ->  (
x  =  z  <->  x  =  .0.  ) )
20 eqeq2 2451 . . . . . . . . 9  |-  ( z  =  .0.  ->  (
y  =  z  <->  y  =  .0.  ) )
2119, 20orbi12d 692 . . . . . . . 8  |-  ( z  =  .0.  ->  (
( x  =  z  \/  y  =  z )  <->  ( x  =  .0.  \/  y  =  .0.  ) ) )
2221adantl 454 . . . . . . 7  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  (
( x  =  z  \/  y  =  z )  <->  ( x  =  .0.  \/  y  =  .0.  ) ) )
2318, 22imbi12d 313 . . . . . 6  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  (
( ( x ( .r `  r ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) )  <->  ( (
x  .x.  y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  ) ) ) )
2412, 23raleqbidv 2922 . . . . 5  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  ( A. y  e.  b 
( ( x ( .r `  r ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) )  <->  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  ) ) ) )
2512, 24raleqbidv 2922 . . . 4  |-  ( ( ( r  =  R  /\  b  =  B )  /\  z  =  .0.  )  ->  ( A. x  e.  b  A. y  e.  b 
( ( x ( .r `  r ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) )  <->  A. x  e.  B  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  ) ) ) )
267, 11, 25sbcied2 3204 . . 3  |-  ( ( r  =  R  /\  b  =  B )  ->  ( [. ( 0g
`  r )  / 
z ]. A. x  e.  b  A. y  e.  b  ( ( x ( .r `  r
) y )  =  z  ->  ( x  =  z  \/  y  =  z ) )  <->  A. x  e.  B  A. y  e.  B  ( ( x  .x.  y )  =  .0. 
->  ( x  =  .0. 
\/  y  =  .0.  ) ) ) )
272, 5, 26sbcied2 3204 . 2  |-  ( r  =  R  ->  ( [. ( Base `  r
)  /  b ]. [. ( 0g `  r
)  /  z ]. A. x  e.  b  A. y  e.  b 
( ( x ( .r `  r ) y )  =  z  ->  ( x  =  z  \/  y  =  z ) )  <->  A. x  e.  B  A. y  e.  B  ( (
x  .x.  y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  ) ) ) )
28 df-domn 16375 . 2  |- Domn  =  {
r  e. NzRing  |  [. ( Base `  r )  / 
b ]. [. ( 0g
`  r )  / 
z ]. A. x  e.  b  A. y  e.  b  ( ( x ( .r `  r
) y )  =  z  ->  ( x  =  z  \/  y  =  z ) ) }
2927, 28elrab2 3100 1  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  (
( x  .x.  y
)  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1653    e. wcel 1727   A.wral 2711   _Vcvv 2962   [.wsbc 3167   ` cfv 5483  (class class class)co 6110   Basecbs 13500   .rcmulr 13561   0gc0g 13754  NzRingcnzr 16359  Domncdomn 16371
This theorem is referenced by:  domnnzr  16386  domneq0  16388  isdomn2  16390  opprdomn  16392  abvn0b  16393  znfld  16872  ply1domn  20077  fta1b  20123  isdomn3  27538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-nul 4363
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-br 4238  df-iota 5447  df-fv 5491  df-ov 6113  df-domn 16375
  Copyright terms: Public domain W3C validator