Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdomn3 Unicode version

Theorem isdomn3 27626
Description: Nonzero elements form a multiplicative submonoid of any domain. (Contributed by Stefan O'Rear, 11-Sep-2015.)
Hypotheses
Ref Expression
isdomn3.b  |-  B  =  ( Base `  R
)
isdomn3.z  |-  .0.  =  ( 0g `  R )
isdomn3.u  |-  U  =  (mulGrp `  R )
Assertion
Ref Expression
isdomn3  |-  ( R  e. Domn 
<->  ( R  e.  Ring  /\  ( B  \  {  .0.  } )  e.  (SubMnd `  U ) ) )

Proof of Theorem isdomn3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isdomn3.b . . 3  |-  B  =  ( Base `  R
)
2 eqid 2296 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
3 isdomn3.z . . 3  |-  .0.  =  ( 0g `  R )
41, 2, 3isdomn 16051 . 2  |-  ( R  e. Domn 
<->  ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) ) )
5 eqid 2296 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
65, 3isnzr 16027 . . . . 5  |-  ( R  e. NzRing 
<->  ( R  e.  Ring  /\  ( 1r `  R
)  =/=  .0.  )
)
76anbi1i 676 . . . 4  |-  ( ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  ( (
x ( .r `  R ) y )  =  .0.  ->  (
x  =  .0.  \/  y  =  .0.  )
) )  <->  ( ( R  e.  Ring  /\  ( 1r `  R )  =/= 
.0.  )  /\  A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) ) )
8 anass 630 . . . 4  |-  ( ( ( R  e.  Ring  /\  ( 1r `  R
)  =/=  .0.  )  /\  A. x  e.  B  A. y  e.  B  ( ( x ( .r `  R ) y )  =  .0. 
->  ( x  =  .0. 
\/  y  =  .0.  ) ) )  <->  ( R  e.  Ring  /\  ( ( 1r `  R )  =/= 
.0.  /\  A. x  e.  B  A. y  e.  B  ( (
x ( .r `  R ) y )  =  .0.  ->  (
x  =  .0.  \/  y  =  .0.  )
) ) ) )
97, 8bitri 240 . . 3  |-  ( ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  ( (
x ( .r `  R ) y )  =  .0.  ->  (
x  =  .0.  \/  y  =  .0.  )
) )  <->  ( R  e.  Ring  /\  ( ( 1r `  R )  =/= 
.0.  /\  A. x  e.  B  A. y  e.  B  ( (
x ( .r `  R ) y )  =  .0.  ->  (
x  =  .0.  \/  y  =  .0.  )
) ) ) )
101, 5rngidcl 15377 . . . . . . 7  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  B )
11 eldifsn 3762 . . . . . . . 8  |-  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  <->  ( ( 1r `  R )  e.  B  /\  ( 1r
`  R )  =/= 
.0.  ) )
1211baibr 872 . . . . . . 7  |-  ( ( 1r `  R )  e.  B  ->  (
( 1r `  R
)  =/=  .0.  <->  ( 1r `  R )  e.  ( B  \  {  .0.  } ) ) )
1310, 12syl 15 . . . . . 6  |-  ( R  e.  Ring  ->  ( ( 1r `  R )  =/=  .0.  <->  ( 1r `  R )  e.  ( B  \  {  .0.  } ) ) )
141, 2rngcl 15370 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  x  e.  B  /\  y  e.  B )  ->  (
x ( .r `  R ) y )  e.  B )
15143expb 1152 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x
( .r `  R
) y )  e.  B )
1615biantrurd 494 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
x ( .r `  R ) y )  =/=  .0.  <->  ( (
x ( .r `  R ) y )  e.  B  /\  (
x ( .r `  R ) y )  =/=  .0.  ) ) )
17 eldifsn 3762 . . . . . . . . . 10  |-  ( ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } )  <->  ( (
x ( .r `  R ) y )  e.  B  /\  (
x ( .r `  R ) y )  =/=  .0.  ) )
1816, 17syl6bbr 254 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
x ( .r `  R ) y )  =/=  .0.  <->  ( x
( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) )
1918imbi2d 307 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  =/=  .0.  )  <->  ( ( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) ) ) )
20192ralbidva 2596 . . . . . . 7  |-  ( R  e.  Ring  ->  ( A. x  e.  B  A. y  e.  B  (
( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  =/=  .0.  )  <->  A. x  e.  B  A. y  e.  B  (
( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) ) ) )
21 con34b 283 . . . . . . . . 9  |-  ( ( ( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
)  <->  ( -.  (
x  =  .0.  \/  y  =  .0.  )  ->  -.  ( x ( .r `  R ) y )  =  .0.  ) )
22 neanior 2544 . . . . . . . . . 10  |-  ( ( x  =/=  .0.  /\  y  =/=  .0.  )  <->  -.  (
x  =  .0.  \/  y  =  .0.  )
)
23 df-ne 2461 . . . . . . . . . 10  |-  ( ( x ( .r `  R ) y )  =/=  .0.  <->  -.  (
x ( .r `  R ) y )  =  .0.  )
2422, 23imbi12i 316 . . . . . . . . 9  |-  ( ( ( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  =/=  .0.  )  <->  ( -.  ( x  =  .0.  \/  y  =  .0.  )  ->  -.  ( x ( .r
`  R ) y )  =  .0.  )
)
2521, 24bitr4i 243 . . . . . . . 8  |-  ( ( ( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
)  <->  ( ( x  =/=  .0.  /\  y  =/=  .0.  )  ->  (
x ( .r `  R ) y )  =/=  .0.  ) )
26252ralbii 2582 . . . . . . 7  |-  ( A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
)  <->  A. x  e.  B  A. y  e.  B  ( ( x  =/= 
.0.  /\  y  =/=  .0.  )  ->  ( x ( .r `  R
) y )  =/= 
.0.  ) )
27 impexp 433 . . . . . . . . . 10  |-  ( ( ( ( x  e.  B  /\  y  e.  B )  /\  (
x  =/=  .0.  /\  y  =/=  .0.  ) )  ->  ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) )  <->  ( (
x  e.  B  /\  y  e.  B )  ->  ( ( x  =/= 
.0.  /\  y  =/=  .0.  )  ->  ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) ) )
28 an4 797 . . . . . . . . . . . 12  |-  ( ( ( x  e.  B  /\  y  e.  B
)  /\  ( x  =/=  .0.  /\  y  =/= 
.0.  ) )  <->  ( (
x  e.  B  /\  x  =/=  .0.  )  /\  ( y  e.  B  /\  y  =/=  .0.  ) ) )
29 eldifsn 3762 . . . . . . . . . . . . 13  |-  ( x  e.  ( B  \  {  .0.  } )  <->  ( x  e.  B  /\  x  =/=  .0.  ) )
30 eldifsn 3762 . . . . . . . . . . . . 13  |-  ( y  e.  ( B  \  {  .0.  } )  <->  ( y  e.  B  /\  y  =/=  .0.  ) )
3129, 30anbi12i 678 . . . . . . . . . . . 12  |-  ( ( x  e.  ( B 
\  {  .0.  }
)  /\  y  e.  ( B  \  {  .0.  } ) )  <->  ( (
x  e.  B  /\  x  =/=  .0.  )  /\  ( y  e.  B  /\  y  =/=  .0.  ) ) )
3228, 31bitr4i 243 . . . . . . . . . . 11  |-  ( ( ( x  e.  B  /\  y  e.  B
)  /\  ( x  =/=  .0.  /\  y  =/= 
.0.  ) )  <->  ( x  e.  ( B  \  {  .0.  } )  /\  y  e.  ( B  \  {  .0.  } ) ) )
3332imbi1i 315 . . . . . . . . . 10  |-  ( ( ( ( x  e.  B  /\  y  e.  B )  /\  (
x  =/=  .0.  /\  y  =/=  .0.  ) )  ->  ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) )  <->  ( (
x  e.  ( B 
\  {  .0.  }
)  /\  y  e.  ( B  \  {  .0.  } ) )  ->  (
x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) ) )
3427, 33bitr3i 242 . . . . . . . . 9  |-  ( ( ( x  e.  B  /\  y  e.  B
)  ->  ( (
x  =/=  .0.  /\  y  =/=  .0.  )  -> 
( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) ) )  <->  ( (
x  e.  ( B 
\  {  .0.  }
)  /\  y  e.  ( B  \  {  .0.  } ) )  ->  (
x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) ) )
35342albii 1557 . . . . . . . 8  |-  ( A. x A. y ( ( x  e.  B  /\  y  e.  B )  ->  ( ( x  =/= 
.0.  /\  y  =/=  .0.  )  ->  ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) )  <->  A. x A. y ( ( x  e.  ( B  \  {  .0.  } )  /\  y  e.  ( B  \  {  .0.  } ) )  -> 
( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) ) )
36 r2al 2593 . . . . . . . 8  |-  ( A. x  e.  B  A. y  e.  B  (
( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) )  <->  A. x A. y ( ( x  e.  B  /\  y  e.  B )  ->  (
( x  =/=  .0.  /\  y  =/=  .0.  )  ->  ( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) ) ) )
37 r2al 2593 . . . . . . . 8  |-  ( A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } )  <->  A. x A. y
( ( x  e.  ( B  \  {  .0.  } )  /\  y  e.  ( B  \  {  .0.  } ) )  -> 
( x ( .r
`  R ) y )  e.  ( B 
\  {  .0.  }
) ) )
3835, 36, 373bitr4ri 269 . . . . . . 7  |-  ( A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } )  <->  A. x  e.  B  A. y  e.  B  ( ( x  =/= 
.0.  /\  y  =/=  .0.  )  ->  ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) )
3920, 26, 383bitr4g 279 . . . . . 6  |-  ( R  e.  Ring  ->  ( A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
)  <->  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) )
4013, 39anbi12d 691 . . . . 5  |-  ( R  e.  Ring  ->  ( ( ( 1r `  R
)  =/=  .0.  /\  A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) )  <->  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) ) ) )
41 isdomn3.u . . . . . . 7  |-  U  =  (mulGrp `  R )
4241rngmgp 15363 . . . . . 6  |-  ( R  e.  Ring  ->  U  e. 
Mnd )
4341, 1mgpbas 15347 . . . . . . . . 9  |-  B  =  ( Base `  U
)
4441, 5rngidval 15359 . . . . . . . . 9  |-  ( 1r
`  R )  =  ( 0g `  U
)
4541, 2mgpplusg 15345 . . . . . . . . 9  |-  ( .r
`  R )  =  ( +g  `  U
)
4643, 44, 45issubm 14441 . . . . . . . 8  |-  ( U  e.  Mnd  ->  (
( B  \  {  .0.  } )  e.  (SubMnd `  U )  <->  ( ( B  \  {  .0.  }
)  C_  B  /\  ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B 
\  {  .0.  }
) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) ) )
47 3anass 938 . . . . . . . 8  |-  ( ( ( B  \  {  .0.  } )  C_  B  /\  ( 1r `  R
)  e.  ( B 
\  {  .0.  }
)  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) )  <->  ( ( B  \  {  .0.  }
)  C_  B  /\  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) ) )
4846, 47syl6bb 252 . . . . . . 7  |-  ( U  e.  Mnd  ->  (
( B  \  {  .0.  } )  e.  (SubMnd `  U )  <->  ( ( B  \  {  .0.  }
)  C_  B  /\  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) ) ) )
49 difss 3316 . . . . . . . 8  |-  ( B 
\  {  .0.  }
)  C_  B
5049biantrur 492 . . . . . . 7  |-  ( ( ( 1r `  R
)  e.  ( B 
\  {  .0.  }
)  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) )  <->  ( ( B  \  {  .0.  }
)  C_  B  /\  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R
) y )  e.  ( B  \  {  .0.  } ) ) ) )
5148, 50syl6bbr 254 . . . . . 6  |-  ( U  e.  Mnd  ->  (
( B  \  {  .0.  } )  e.  (SubMnd `  U )  <->  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) ) ) )
5242, 51syl 15 . . . . 5  |-  ( R  e.  Ring  ->  ( ( B  \  {  .0.  } )  e.  (SubMnd `  U )  <->  ( ( 1r `  R )  e.  ( B  \  {  .0.  } )  /\  A. x  e.  ( B  \  {  .0.  } ) A. y  e.  ( B  \  {  .0.  } ) ( x ( .r `  R ) y )  e.  ( B  \  {  .0.  } ) ) ) )
5340, 52bitr4d 247 . . . 4  |-  ( R  e.  Ring  ->  ( ( ( 1r `  R
)  =/=  .0.  /\  A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) )  <->  ( B  \  {  .0.  } )  e.  (SubMnd `  U
) ) )
5453pm5.32i 618 . . 3  |-  ( ( R  e.  Ring  /\  (
( 1r `  R
)  =/=  .0.  /\  A. x  e.  B  A. y  e.  B  (
( x ( .r
`  R ) y )  =  .0.  ->  ( x  =  .0.  \/  y  =  .0.  )
) ) )  <->  ( R  e.  Ring  /\  ( B  \  {  .0.  } )  e.  (SubMnd `  U
) ) )
559, 54bitri 240 . 2  |-  ( ( R  e. NzRing  /\  A. x  e.  B  A. y  e.  B  ( (
x ( .r `  R ) y )  =  .0.  ->  (
x  =  .0.  \/  y  =  .0.  )
) )  <->  ( R  e.  Ring  /\  ( B  \  {  .0.  } )  e.  (SubMnd `  U
) ) )
564, 55bitri 240 1  |-  ( R  e. Domn 
<->  ( R  e.  Ring  /\  ( B  \  {  .0.  } )  e.  (SubMnd `  U ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934   A.wal 1530    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556    \ cdif 3162    C_ wss 3165   {csn 3653   ` cfv 5271  (class class class)co 5874   Basecbs 13164   .rcmulr 13225   0gc0g 13416   Mndcmnd 14377  SubMndcsubmnd 14430  mulGrpcmgp 15341   Ringcrg 15353   1rcur 15355  NzRingcnzr 16025  Domncdomn 16037
This theorem is referenced by:  deg1mhm  27629
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-plusg 13237  df-0g 13420  df-mnd 14383  df-submnd 14432  df-mgp 15342  df-rng 15356  df-ur 15358  df-nzr 16026  df-domn 16041
  Copyright terms: Public domain W3C validator