Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isdrngo3 Unicode version

Theorem isdrngo3 26181
Description: A division ring is a ring in which  1  =/=  0 and every nonzero element is invertible. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
isdivrng1.1  |-  G  =  ( 1st `  R
)
isdivrng1.2  |-  H  =  ( 2nd `  R
)
isdivrng1.3  |-  Z  =  (GId `  G )
isdivrng1.4  |-  X  =  ran  G
isdivrng2.5  |-  U  =  (GId `  H )
Assertion
Ref Expression
isdrngo3  |-  ( R  e.  DivRingOps 
<->  ( R  e.  RingOps  /\  ( U  =/=  Z  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  X  ( y H x )  =  U ) ) )
Distinct variable groups:    x, H, y    x, X, y    x, Z, y    x, R, y   
x, U, y
Allowed substitution hints:    G( x, y)

Proof of Theorem isdrngo3
StepHypRef Expression
1 isdivrng1.1 . . 3  |-  G  =  ( 1st `  R
)
2 isdivrng1.2 . . 3  |-  H  =  ( 2nd `  R
)
3 isdivrng1.3 . . 3  |-  Z  =  (GId `  G )
4 isdivrng1.4 . . 3  |-  X  =  ran  G
5 isdivrng2.5 . . 3  |-  U  =  (GId `  H )
61, 2, 3, 4, 5isdrngo2 26180 . 2  |-  ( R  e.  DivRingOps 
<->  ( R  e.  RingOps  /\  ( U  =/=  Z  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  ( X  \  { Z } ) ( y H x )  =  U ) ) )
7 eldifi 3385 . . . . . 6  |-  ( x  e.  ( X  \  { Z } )  ->  x  e.  X )
8 difss 3390 . . . . . . . 8  |-  ( X 
\  { Z }
)  C_  X
9 ssrexv 3324 . . . . . . . 8  |-  ( ( X  \  { Z } )  C_  X  ->  ( E. y  e.  ( X  \  { Z } ) ( y H x )  =  U  ->  E. y  e.  X  ( y H x )  =  U ) )
108, 9ax-mp 8 . . . . . . 7  |-  ( E. y  e.  ( X 
\  { Z }
) ( y H x )  =  U  ->  E. y  e.  X  ( y H x )  =  U )
11 neeq1 2537 . . . . . . . . . . . . . . . 16  |-  ( ( y H x )  =  U  ->  (
( y H x )  =/=  Z  <->  U  =/=  Z ) )
1211biimparc 473 . . . . . . . . . . . . . . 15  |-  ( ( U  =/=  Z  /\  ( y H x )  =  U )  ->  ( y H x )  =/=  Z
)
133, 4, 1, 2rngolz 21500 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  e.  RingOps  /\  x  e.  X )  ->  ( Z H x )  =  Z )
14 oveq1 5988 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  Z  ->  (
y H x )  =  ( Z H x ) )
1514eqeq1d 2374 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  Z  ->  (
( y H x )  =  Z  <->  ( Z H x )  =  Z ) )
1613, 15syl5ibrcom 213 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  RingOps  /\  x  e.  X )  ->  (
y  =  Z  -> 
( y H x )  =  Z ) )
1716necon3d 2567 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  RingOps  /\  x  e.  X )  ->  (
( y H x )  =/=  Z  -> 
y  =/=  Z ) )
1817imp 418 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  RingOps  /\  x  e.  X )  /\  ( y H x )  =/=  Z )  ->  y  =/=  Z
)
1912, 18sylan2 460 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  RingOps  /\  x  e.  X )  /\  ( U  =/=  Z  /\  ( y H x )  =  U ) )  ->  y  =/=  Z )
2019an4s 799 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  RingOps  /\  U  =/=  Z )  /\  ( x  e.  X  /\  ( y H x )  =  U ) )  ->  y  =/=  Z )
2120anassrs 629 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  RingOps 
/\  U  =/=  Z
)  /\  x  e.  X )  /\  (
y H x )  =  U )  -> 
y  =/=  Z )
22 pm3.2 434 . . . . . . . . . . . 12  |-  ( y  e.  X  ->  (
y  =/=  Z  -> 
( y  e.  X  /\  y  =/=  Z
) ) )
2321, 22syl5com 26 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  RingOps 
/\  U  =/=  Z
)  /\  x  e.  X )  /\  (
y H x )  =  U )  -> 
( y  e.  X  ->  ( y  e.  X  /\  y  =/=  Z
) ) )
24 eldifsn 3842 . . . . . . . . . . 11  |-  ( y  e.  ( X  \  { Z } )  <->  ( y  e.  X  /\  y  =/=  Z ) )
2523, 24syl6ibr 218 . . . . . . . . . 10  |-  ( ( ( ( R  e.  RingOps 
/\  U  =/=  Z
)  /\  x  e.  X )  /\  (
y H x )  =  U )  -> 
( y  e.  X  ->  y  e.  ( X 
\  { Z }
) ) )
2625imdistanda 674 . . . . . . . . 9  |-  ( ( ( R  e.  RingOps  /\  U  =/=  Z )  /\  x  e.  X )  ->  ( ( ( y H x )  =  U  /\  y  e.  X )  ->  (
( y H x )  =  U  /\  y  e.  ( X  \  { Z } ) ) ) )
27 ancom 437 . . . . . . . . 9  |-  ( ( y  e.  X  /\  ( y H x )  =  U )  <-> 
( ( y H x )  =  U  /\  y  e.  X
) )
28 ancom 437 . . . . . . . . 9  |-  ( ( y  e.  ( X 
\  { Z }
)  /\  ( y H x )  =  U )  <->  ( (
y H x )  =  U  /\  y  e.  ( X  \  { Z } ) ) )
2926, 27, 283imtr4g 261 . . . . . . . 8  |-  ( ( ( R  e.  RingOps  /\  U  =/=  Z )  /\  x  e.  X )  ->  ( ( y  e.  X  /\  ( y H x )  =  U )  ->  (
y  e.  ( X 
\  { Z }
)  /\  ( y H x )  =  U ) ) )
3029reximdv2 2737 . . . . . . 7  |-  ( ( ( R  e.  RingOps  /\  U  =/=  Z )  /\  x  e.  X )  ->  ( E. y  e.  X  ( y H x )  =  U  ->  E. y  e.  ( X  \  { Z } ) ( y H x )  =  U ) )
3110, 30impbid2 195 . . . . . 6  |-  ( ( ( R  e.  RingOps  /\  U  =/=  Z )  /\  x  e.  X )  ->  ( E. y  e.  ( X  \  { Z } ) ( y H x )  =  U  <->  E. y  e.  X  ( y H x )  =  U ) )
327, 31sylan2 460 . . . . 5  |-  ( ( ( R  e.  RingOps  /\  U  =/=  Z )  /\  x  e.  ( X  \  { Z } ) )  ->  ( E. y  e.  ( X  \  { Z } ) ( y H x )  =  U  <->  E. y  e.  X  ( y H x )  =  U ) )
3332ralbidva 2644 . . . 4  |-  ( ( R  e.  RingOps  /\  U  =/=  Z )  ->  ( A. x  e.  ( X  \  { Z }
) E. y  e.  ( X  \  { Z } ) ( y H x )  =  U  <->  A. x  e.  ( X  \  { Z } ) E. y  e.  X  ( y H x )  =  U ) )
3433pm5.32da 622 . . 3  |-  ( R  e.  RingOps  ->  ( ( U  =/=  Z  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  ( X  \  { Z } ) ( y H x )  =  U )  <->  ( U  =/=  Z  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  X  ( y H x )  =  U ) ) )
3534pm5.32i 618 . 2  |-  ( ( R  e.  RingOps  /\  ( U  =/=  Z  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  ( X  \  { Z } ) ( y H x )  =  U ) )  <->  ( R  e.  RingOps  /\  ( U  =/=  Z  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  X  ( y H x )  =  U ) ) )
366, 35bitri 240 1  |-  ( R  e.  DivRingOps 
<->  ( R  e.  RingOps  /\  ( U  =/=  Z  /\  A. x  e.  ( X  \  { Z } ) E. y  e.  X  ( y H x )  =  U ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1647    e. wcel 1715    =/= wne 2529   A.wral 2628   E.wrex 2629    \ cdif 3235    C_ wss 3238   {csn 3729   ran crn 4793   ` cfv 5358  (class class class)co 5981   1stc1st 6247   2ndc2nd 6248  GIdcgi 21286   RingOpscrngo 21474   DivRingOpscdrng 21504
This theorem is referenced by:  isfldidl  26284
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-1st 6249  df-2nd 6250  df-riota 6446  df-1o 6621  df-er 6802  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-grpo 21290  df-gid 21291  df-ginv 21292  df-ablo 21381  df-ass 21412  df-exid 21414  df-mgm 21418  df-sgr 21430  df-mndo 21437  df-rngo 21475  df-drngo 21505
  Copyright terms: Public domain W3C validator