MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isdrngrd Structured version   Unicode version

Theorem isdrngrd 15861
Description: Properties that determine a division ring.  I (reciprocal) is normally dependent on  x i.e. read it as  I ( x )." This version of isdrngd 15860 requires a right reciprocal instead of left. (Contributed by NM, 10-Aug-2013.)
Hypotheses
Ref Expression
isdrngd.b  |-  ( ph  ->  B  =  ( Base `  R ) )
isdrngd.t  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
isdrngd.z  |-  ( ph  ->  .0.  =  ( 0g
`  R ) )
isdrngd.u  |-  ( ph  ->  .1.  =  ( 1r
`  R ) )
isdrngd.r  |-  ( ph  ->  R  e.  Ring )
isdrngd.n  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  )  /\  (
y  e.  B  /\  y  =/=  .0.  ) )  ->  ( x  .x.  y )  =/=  .0.  )
isdrngd.o  |-  ( ph  ->  .1.  =/=  .0.  )
isdrngd.i  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  ) )  ->  I  e.  B )
isdrngd.j  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  ) )  ->  I  =/=  .0.  )
isdrngrd.k  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  ) )  -> 
( x  .x.  I
)  =  .1.  )
Assertion
Ref Expression
isdrngrd  |-  ( ph  ->  R  e.  DivRing )
Distinct variable groups:    x, y,  .0.    x,  .1. , y    x, B, y    y, I    x, R, y    ph, x, y   
x,  .x. , y
Allowed substitution hint:    I( x)

Proof of Theorem isdrngrd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 isdrngd.b . . . 4  |-  ( ph  ->  B  =  ( Base `  R ) )
2 eqid 2436 . . . . 5  |-  (oppr `  R
)  =  (oppr `  R
)
3 eqid 2436 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
42, 3opprbas 15734 . . . 4  |-  ( Base `  R )  =  (
Base `  (oppr
`  R ) )
51, 4syl6eq 2484 . . 3  |-  ( ph  ->  B  =  ( Base `  (oppr
`  R ) ) )
6 eqidd 2437 . . 3  |-  ( ph  ->  ( .r `  (oppr `  R
) )  =  ( .r `  (oppr `  R
) ) )
7 isdrngd.z . . . 4  |-  ( ph  ->  .0.  =  ( 0g
`  R ) )
8 eqid 2436 . . . . 5  |-  ( 0g
`  R )  =  ( 0g `  R
)
92, 8oppr0 15738 . . . 4  |-  ( 0g
`  R )  =  ( 0g `  (oppr `  R
) )
107, 9syl6eq 2484 . . 3  |-  ( ph  ->  .0.  =  ( 0g
`  (oppr
`  R ) ) )
11 isdrngd.u . . . 4  |-  ( ph  ->  .1.  =  ( 1r
`  R ) )
12 eqid 2436 . . . . 5  |-  ( 1r
`  R )  =  ( 1r `  R
)
132, 12oppr1 15739 . . . 4  |-  ( 1r
`  R )  =  ( 1r `  (oppr `  R
) )
1411, 13syl6eq 2484 . . 3  |-  ( ph  ->  .1.  =  ( 1r
`  (oppr
`  R ) ) )
15 isdrngd.r . . . 4  |-  ( ph  ->  R  e.  Ring )
162opprrng 15736 . . . 4  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
1715, 16syl 16 . . 3  |-  ( ph  ->  (oppr
`  R )  e. 
Ring )
18 eleq1 2496 . . . . . . 7  |-  ( y  =  x  ->  (
y  e.  B  <->  x  e.  B ) )
19 neeq1 2609 . . . . . . 7  |-  ( y  =  x  ->  (
y  =/=  .0.  <->  x  =/=  .0.  ) )
2018, 19anbi12d 692 . . . . . 6  |-  ( y  =  x  ->  (
( y  e.  B  /\  y  =/=  .0.  ) 
<->  ( x  e.  B  /\  x  =/=  .0.  ) ) )
21203anbi2d 1259 . . . . 5  |-  ( y  =  x  ->  (
( ph  /\  (
y  e.  B  /\  y  =/=  .0.  )  /\  ( z  e.  B  /\  z  =/=  .0.  ) )  <->  ( ph  /\  ( x  e.  B  /\  x  =/=  .0.  )  /\  ( z  e.  B  /\  z  =/= 
.0.  ) ) ) )
22 oveq1 6088 . . . . . 6  |-  ( y  =  x  ->  (
y ( .r `  (oppr `  R ) ) z )  =  ( x ( .r `  (oppr `  R
) ) z ) )
2322neeq1d 2614 . . . . 5  |-  ( y  =  x  ->  (
( y ( .r
`  (oppr
`  R ) ) z )  =/=  .0.  <->  (
x ( .r `  (oppr `  R ) ) z )  =/=  .0.  )
)
2421, 23imbi12d 312 . . . 4  |-  ( y  =  x  ->  (
( ( ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  ( z  e.  B  /\  z  =/= 
.0.  ) )  -> 
( y ( .r
`  (oppr
`  R ) ) z )  =/=  .0.  ) 
<->  ( ( ph  /\  ( x  e.  B  /\  x  =/=  .0.  )  /\  ( z  e.  B  /\  z  =/= 
.0.  ) )  -> 
( x ( .r
`  (oppr
`  R ) ) z )  =/=  .0.  ) ) )
25 eleq1 2496 . . . . . . . 8  |-  ( x  =  z  ->  (
x  e.  B  <->  z  e.  B ) )
26 neeq1 2609 . . . . . . . 8  |-  ( x  =  z  ->  (
x  =/=  .0.  <->  z  =/=  .0.  ) )
2725, 26anbi12d 692 . . . . . . 7  |-  ( x  =  z  ->  (
( x  e.  B  /\  x  =/=  .0.  ) 
<->  ( z  e.  B  /\  z  =/=  .0.  ) ) )
28273anbi3d 1260 . . . . . 6  |-  ( x  =  z  ->  (
( ph  /\  (
y  e.  B  /\  y  =/=  .0.  )  /\  ( x  e.  B  /\  x  =/=  .0.  ) )  <->  ( ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  ( z  e.  B  /\  z  =/= 
.0.  ) ) ) )
29 oveq2 6089 . . . . . . 7  |-  ( x  =  z  ->  (
y ( .r `  (oppr `  R ) ) x )  =  ( y ( .r `  (oppr `  R
) ) z ) )
3029neeq1d 2614 . . . . . 6  |-  ( x  =  z  ->  (
( y ( .r
`  (oppr
`  R ) ) x )  =/=  .0.  <->  (
y ( .r `  (oppr `  R ) ) z )  =/=  .0.  )
)
3128, 30imbi12d 312 . . . . 5  |-  ( x  =  z  ->  (
( ( ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  ( x  e.  B  /\  x  =/= 
.0.  ) )  -> 
( y ( .r
`  (oppr
`  R ) ) x )  =/=  .0.  ) 
<->  ( ( ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  ( z  e.  B  /\  z  =/= 
.0.  ) )  -> 
( y ( .r
`  (oppr
`  R ) ) z )  =/=  .0.  ) ) )
32 isdrngd.t . . . . . . . . . 10  |-  ( ph  ->  .x.  =  ( .r
`  R ) )
33323ad2ant1 978 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  )  /\  (
y  e.  B  /\  y  =/=  .0.  ) )  ->  .x.  =  ( .r `  R ) )
3433oveqd 6098 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  )  /\  (
y  e.  B  /\  y  =/=  .0.  ) )  ->  ( x  .x.  y )  =  ( x ( .r `  R ) y ) )
35 eqid 2436 . . . . . . . . 9  |-  ( .r
`  R )  =  ( .r `  R
)
36 eqid 2436 . . . . . . . . 9  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
373, 35, 2, 36opprmul 15731 . . . . . . . 8  |-  ( y ( .r `  (oppr `  R
) ) x )  =  ( x ( .r `  R ) y )
3834, 37syl6eqr 2486 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  )  /\  (
y  e.  B  /\  y  =/=  .0.  ) )  ->  ( x  .x.  y )  =  ( y ( .r `  (oppr `  R ) ) x ) )
39 isdrngd.n . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  )  /\  (
y  e.  B  /\  y  =/=  .0.  ) )  ->  ( x  .x.  y )  =/=  .0.  )
4038, 39eqnetrrd 2621 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  )  /\  (
y  e.  B  /\  y  =/=  .0.  ) )  ->  ( y ( .r `  (oppr `  R
) ) x )  =/=  .0.  )
41403com23 1159 . . . . 5  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
x  e.  B  /\  x  =/=  .0.  ) )  ->  ( y ( .r `  (oppr `  R
) ) x )  =/=  .0.  )
4231, 41chvarv 1969 . . . 4  |-  ( (
ph  /\  ( y  e.  B  /\  y  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  ( y ( .r `  (oppr `  R
) ) z )  =/=  .0.  )
4324, 42chvarv 1969 . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  )  /\  (
z  e.  B  /\  z  =/=  .0.  ) )  ->  ( x ( .r `  (oppr `  R
) ) z )  =/=  .0.  )
44 isdrngd.o . . 3  |-  ( ph  ->  .1.  =/=  .0.  )
45 isdrngd.i . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  ) )  ->  I  e.  B )
46 isdrngd.j . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  ) )  ->  I  =/=  .0.  )
473, 35, 2, 36opprmul 15731 . . . 4  |-  ( I ( .r `  (oppr `  R
) ) x )  =  ( x ( .r `  R ) I )
4832adantr 452 . . . . . 6  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  ) )  ->  .x.  =  ( .r `  R ) )
4948oveqd 6098 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  ) )  -> 
( x  .x.  I
)  =  ( x ( .r `  R
) I ) )
50 isdrngrd.k . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  ) )  -> 
( x  .x.  I
)  =  .1.  )
5149, 50eqtr3d 2470 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  ) )  -> 
( x ( .r
`  R ) I )  =  .1.  )
5247, 51syl5eq 2480 . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  x  =/=  .0.  ) )  -> 
( I ( .r
`  (oppr
`  R ) ) x )  =  .1.  )
535, 6, 10, 14, 17, 43, 44, 45, 46, 52isdrngd 15860 . 2  |-  ( ph  ->  (oppr
`  R )  e.  DivRing )
542opprdrng 15859 . 2  |-  ( R  e.  DivRing 
<->  (oppr
`  R )  e.  DivRing )
5553, 54sylibr 204 1  |-  ( ph  ->  R  e.  DivRing )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   ` cfv 5454  (class class class)co 6081   Basecbs 13469   .rcmulr 13530   0gc0g 13723   Ringcrg 15660   1rcur 15662  opprcoppr 15727   DivRingcdr 15835
This theorem is referenced by:  erngdvlem4-rN  31796
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-tpos 6479  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-2 10058  df-3 10059  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-0g 13727  df-mnd 14690  df-grp 14812  df-minusg 14813  df-mgp 15649  df-rng 15663  df-ur 15665  df-oppr 15728  df-dvdsr 15746  df-unit 15747  df-invr 15777  df-dvr 15788  df-drng 15837
  Copyright terms: Public domain W3C validator