MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercolllem1 Unicode version

Theorem isercolllem1 12154
Description: Lemma for isercoll 12157. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll.z  |-  Z  =  ( ZZ>= `  M )
isercoll.m  |-  ( ph  ->  M  e.  ZZ )
isercoll.g  |-  ( ph  ->  G : NN --> Z )
isercoll.i  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  < 
( G `  (
k  +  1 ) ) )
Assertion
Ref Expression
isercolllem1  |-  ( (
ph  /\  S  C_  NN )  ->  ( G  |`  S )  Isom  <  ,  <  ( S , 
( G " S
) ) )
Distinct variable groups:    ph, k    k, G    k, M
Allowed substitution hints:    S( k)    Z( k)

Proof of Theorem isercolllem1
Dummy variables  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isercoll.z . . . . . . . . . . 11  |-  Z  =  ( ZZ>= `  M )
2 uzssz 10263 . . . . . . . . . . 11  |-  ( ZZ>= `  M )  C_  ZZ
31, 2eqsstri 3221 . . . . . . . . . 10  |-  Z  C_  ZZ
4 zssre 10047 . . . . . . . . . 10  |-  ZZ  C_  RR
53, 4sstri 3201 . . . . . . . . 9  |-  Z  C_  RR
6 isercoll.g . . . . . . . . . . 11  |-  ( ph  ->  G : NN --> Z )
76ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  G : NN
--> Z )
8 simplrl 736 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  x  e.  NN )
9 ffvelrn 5679 . . . . . . . . . 10  |-  ( ( G : NN --> Z  /\  x  e.  NN )  ->  ( G `  x
)  e.  Z )
107, 8, 9syl2anc 642 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( G `  x )  e.  Z
)
115, 10sseldi 3191 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( G `  x )  e.  RR )
12 simplrr 737 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  y  e.  NN )
1312nnred 9777 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  y  e.  RR )
1411, 13resubcld 9227 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( ( G `  x )  -  y )  e.  RR )
158nnred 9777 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  x  e.  RR )
1611, 15resubcld 9227 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( ( G `  x )  -  x )  e.  RR )
17 ffvelrn 5679 . . . . . . . . . 10  |-  ( ( G : NN --> Z  /\  y  e.  NN )  ->  ( G `  y
)  e.  Z )
187, 12, 17syl2anc 642 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( G `  y )  e.  Z
)
195, 18sseldi 3191 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( G `  y )  e.  RR )
2019, 13resubcld 9227 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( ( G `  y )  -  y )  e.  RR )
21 simpr 447 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  x  <  y )
2215, 13, 11, 21ltsub2dd 9401 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( ( G `  x )  -  y )  < 
( ( G `  x )  -  x
) )
238nnzd 10132 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  x  e.  ZZ )
2412nnzd 10132 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  y  e.  ZZ )
2515, 13, 21ltled 8983 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  x  <_  y )
26 eluz2 10252 . . . . . . . . . 10  |-  ( y  e.  ( ZZ>= `  x
)  <->  ( x  e.  ZZ  /\  y  e.  ZZ  /\  x  <_ 
y ) )
2723, 24, 25, 26syl3anbrc 1136 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  y  e.  ( ZZ>= `  x )
)
28 elfzuz 10810 . . . . . . . . . 10  |-  ( k  e.  ( x ... y )  ->  k  e.  ( ZZ>= `  x )
)
29 nnuz 10279 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
3029uztrn2 10261 . . . . . . . . . . . 12  |-  ( ( x  e.  NN  /\  k  e.  ( ZZ>= `  x ) )  -> 
k  e.  NN )
318, 30sylan 457 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  ( ZZ>= `  x )
)  ->  k  e.  NN )
32 fveq2 5541 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  ( G `  n )  =  ( G `  k ) )
33 id 19 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  n  =  k )
3432, 33oveq12d 5892 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  (
( G `  n
)  -  n )  =  ( ( G `
 k )  -  k ) )
35 eqid 2296 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  |->  ( ( G `  n )  -  n ) )  =  ( n  e.  NN  |->  ( ( G `
 n )  -  n ) )
36 ovex 5899 . . . . . . . . . . . . . 14  |-  ( ( G `  k )  -  k )  e. 
_V
3734, 35, 36fvmpt 5618 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  k
)  =  ( ( G `  k )  -  k ) )
3837adantl 452 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  k
)  =  ( ( G `  k )  -  k ) )
39 ffvelrn 5679 . . . . . . . . . . . . . . 15  |-  ( ( G : NN --> Z  /\  k  e.  NN )  ->  ( G `  k
)  e.  Z )
407, 39sylan 457 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  k )  e.  Z )
415, 40sseldi 3191 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  k )  e.  RR )
42 nnre 9769 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  k  e.  RR )
4342adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  k  e.  RR )
4441, 43resubcld 9227 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( G `  k
)  -  k )  e.  RR )
4538, 44eqeltrd 2370 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  k
)  e.  RR )
4631, 45syldan 456 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  ( ZZ>= `  x )
)  ->  ( (
n  e.  NN  |->  ( ( G `  n
)  -  n ) ) `  k )  e.  RR )
4728, 46sylan2 460 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  ( x ... y
) )  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  k
)  e.  RR )
48 elfzuz 10810 . . . . . . . . . 10  |-  ( k  e.  ( x ... ( y  -  1 ) )  ->  k  e.  ( ZZ>= `  x )
)
49 peano2nn 9774 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
50 ffvelrn 5679 . . . . . . . . . . . . . . . . 17  |-  ( ( G : NN --> Z  /\  ( k  +  1 )  e.  NN )  ->  ( G `  ( k  +  1 ) )  e.  Z
)
517, 49, 50syl2an 463 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  ( k  +  1 ) )  e.  Z )
525, 51sseldi 3191 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  ( k  +  1 ) )  e.  RR )
53 peano2rem 9129 . . . . . . . . . . . . . . 15  |-  ( ( G `  ( k  +  1 ) )  e.  RR  ->  (
( G `  (
k  +  1 ) )  -  1 )  e.  RR )
5452, 53syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( G `  (
k  +  1 ) )  -  1 )  e.  RR )
55 simpll 730 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ph )
56 isercoll.i . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  < 
( G `  (
k  +  1 ) ) )
5755, 56sylan 457 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  k )  <  ( G `  (
k  +  1 ) ) )
583, 40sseldi 3191 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  k )  e.  ZZ )
593, 51sseldi 3191 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  ( k  +  1 ) )  e.  ZZ )
60 zltlem1 10086 . . . . . . . . . . . . . . . 16  |-  ( ( ( G `  k
)  e.  ZZ  /\  ( G `  ( k  +  1 ) )  e.  ZZ )  -> 
( ( G `  k )  <  ( G `  ( k  +  1 ) )  <-> 
( G `  k
)  <_  ( ( G `  ( k  +  1 ) )  -  1 ) ) )
6158, 59, 60syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( G `  k
)  <  ( G `  ( k  +  1 ) )  <->  ( G `  k )  <_  (
( G `  (
k  +  1 ) )  -  1 ) ) )
6257, 61mpbid 201 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  k )  <_  ( ( G `  ( k  +  1 ) )  -  1 ) )
6341, 54, 43, 62lesub1dd 9404 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( G `  k
)  -  k )  <_  ( ( ( G `  ( k  +  1 ) )  -  1 )  -  k ) )
6452recnd 8877 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  ( G `  ( k  +  1 ) )  e.  CC )
65 ax-1cn 8811 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
6665a1i 10 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  1  e.  CC )
6743recnd 8877 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  k  e.  CC )
6864, 66, 67sub32d 9205 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( ( G `  ( k  +  1 ) )  -  1 )  -  k )  =  ( ( ( G `  ( k  +  1 ) )  -  k )  - 
1 ) )
6964, 67, 66subsub4d 9204 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( ( G `  ( k  +  1 ) )  -  k
)  -  1 )  =  ( ( G `
 ( k  +  1 ) )  -  ( k  +  1 ) ) )
7068, 69eqtrd 2328 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( ( G `  ( k  +  1 ) )  -  1 )  -  k )  =  ( ( G `
 ( k  +  1 ) )  -  ( k  +  1 ) ) )
7163, 70breqtrd 4063 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( G `  k
)  -  k )  <_  ( ( G `
 ( k  +  1 ) )  -  ( k  +  1 ) ) )
7249adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
k  +  1 )  e.  NN )
73 fveq2 5541 . . . . . . . . . . . . . . 15  |-  ( n  =  ( k  +  1 )  ->  ( G `  n )  =  ( G `  ( k  +  1 ) ) )
74 id 19 . . . . . . . . . . . . . . 15  |-  ( n  =  ( k  +  1 )  ->  n  =  ( k  +  1 ) )
7573, 74oveq12d 5892 . . . . . . . . . . . . . 14  |-  ( n  =  ( k  +  1 )  ->  (
( G `  n
)  -  n )  =  ( ( G `
 ( k  +  1 ) )  -  ( k  +  1 ) ) )
76 ovex 5899 . . . . . . . . . . . . . 14  |-  ( ( G `  ( k  +  1 ) )  -  ( k  +  1 ) )  e. 
_V
7775, 35, 76fvmpt 5618 . . . . . . . . . . . . 13  |-  ( ( k  +  1 )  e.  NN  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  (
k  +  1 ) )  =  ( ( G `  ( k  +  1 ) )  -  ( k  +  1 ) ) )
7872, 77syl 15 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  (
k  +  1 ) )  =  ( ( G `  ( k  +  1 ) )  -  ( k  +  1 ) ) )
7971, 38, 783brtr4d 4069 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  k
)  <_  ( (
n  e.  NN  |->  ( ( G `  n
)  -  n ) ) `  ( k  +  1 ) ) )
8031, 79syldan 456 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  ( ZZ>= `  x )
)  ->  ( (
n  e.  NN  |->  ( ( G `  n
)  -  n ) ) `  k )  <_  ( ( n  e.  NN  |->  ( ( G `  n )  -  n ) ) `
 ( k  +  1 ) ) )
8148, 80sylan2 460 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  /\  x  < 
y )  /\  k  e.  ( x ... (
y  -  1 ) ) )  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  k
)  <_  ( (
n  e.  NN  |->  ( ( G `  n
)  -  n ) ) `  ( k  +  1 ) ) )
8227, 47, 81monoord 11092 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( (
n  e.  NN  |->  ( ( G `  n
)  -  n ) ) `  x )  <_  ( ( n  e.  NN  |->  ( ( G `  n )  -  n ) ) `
 y ) )
83 fveq2 5541 . . . . . . . . . . 11  |-  ( n  =  x  ->  ( G `  n )  =  ( G `  x ) )
84 id 19 . . . . . . . . . . 11  |-  ( n  =  x  ->  n  =  x )
8583, 84oveq12d 5892 . . . . . . . . . 10  |-  ( n  =  x  ->  (
( G `  n
)  -  n )  =  ( ( G `
 x )  -  x ) )
86 ovex 5899 . . . . . . . . . 10  |-  ( ( G `  x )  -  x )  e. 
_V
8785, 35, 86fvmpt 5618 . . . . . . . . 9  |-  ( x  e.  NN  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  x
)  =  ( ( G `  x )  -  x ) )
888, 87syl 15 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( (
n  e.  NN  |->  ( ( G `  n
)  -  n ) ) `  x )  =  ( ( G `
 x )  -  x ) )
89 fveq2 5541 . . . . . . . . . . 11  |-  ( n  =  y  ->  ( G `  n )  =  ( G `  y ) )
90 id 19 . . . . . . . . . . 11  |-  ( n  =  y  ->  n  =  y )
9189, 90oveq12d 5892 . . . . . . . . . 10  |-  ( n  =  y  ->  (
( G `  n
)  -  n )  =  ( ( G `
 y )  -  y ) )
92 ovex 5899 . . . . . . . . . 10  |-  ( ( G `  y )  -  y )  e. 
_V
9391, 35, 92fvmpt 5618 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
( n  e.  NN  |->  ( ( G `  n )  -  n
) ) `  y
)  =  ( ( G `  y )  -  y ) )
9412, 93syl 15 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( (
n  e.  NN  |->  ( ( G `  n
)  -  n ) ) `  y )  =  ( ( G `
 y )  -  y ) )
9582, 88, 943brtr3d 4068 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( ( G `  x )  -  x )  <_  (
( G `  y
)  -  y ) )
9614, 16, 20, 22, 95ltletrd 8992 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( ( G `  x )  -  y )  < 
( ( G `  y )  -  y
) )
9711, 19, 13ltsub1d 9397 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( ( G `  x )  <  ( G `  y
)  <->  ( ( G `
 x )  -  y )  <  (
( G `  y
)  -  y ) ) )
9896, 97mpbird 223 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  NN  /\  y  e.  NN )
)  /\  x  <  y )  ->  ( G `  x )  <  ( G `  y )
)
9998ex 423 . . . 4  |-  ( (
ph  /\  ( x  e.  NN  /\  y  e.  NN ) )  -> 
( x  <  y  ->  ( G `  x
)  <  ( G `  y ) ) )
10099ralrimivva 2648 . . 3  |-  ( ph  ->  A. x  e.  NN  A. y  e.  NN  (
x  <  y  ->  ( G `  x )  <  ( G `  y ) ) )
101 ssralv 3250 . . . . 5  |-  ( S 
C_  NN  ->  ( A. y  e.  NN  (
x  <  y  ->  ( G `  x )  <  ( G `  y ) )  ->  A. y  e.  S  ( x  <  y  -> 
( G `  x
)  <  ( G `  y ) ) ) )
102101ralimdv 2635 . . . 4  |-  ( S 
C_  NN  ->  ( A. x  e.  NN  A. y  e.  NN  ( x  < 
y  ->  ( G `  x )  <  ( G `  y )
)  ->  A. x  e.  NN  A. y  e.  S  ( x  < 
y  ->  ( G `  x )  <  ( G `  y )
) ) )
103 ssralv 3250 . . . 4  |-  ( S 
C_  NN  ->  ( A. x  e.  NN  A. y  e.  S  ( x  <  y  ->  ( G `  x )  <  ( G `  y )
)  ->  A. x  e.  S  A. y  e.  S  ( x  <  y  ->  ( G `  x )  <  ( G `  y )
) ) )
104102, 103syld 40 . . 3  |-  ( S 
C_  NN  ->  ( A. x  e.  NN  A. y  e.  NN  ( x  < 
y  ->  ( G `  x )  <  ( G `  y )
)  ->  A. x  e.  S  A. y  e.  S  ( x  <  y  ->  ( G `  x )  <  ( G `  y )
) ) )
105100, 104mpan9 455 . 2  |-  ( (
ph  /\  S  C_  NN )  ->  A. x  e.  S  A. y  e.  S  ( x  <  y  -> 
( G `  x
)  <  ( G `  y ) ) )
106 nnssre 9766 . . . . 5  |-  NN  C_  RR
107 ltso 8919 . . . . 5  |-  <  Or  RR
108 soss 4348 . . . . 5  |-  ( NN  C_  RR  ->  (  <  Or  RR  ->  <  Or  NN ) )
109106, 107, 108mp2 17 . . . 4  |-  <  Or  NN
110109a1i 10 . . 3  |-  ( (
ph  /\  S  C_  NN )  ->  <  Or  NN )
111 soss 4348 . . . . 5  |-  ( Z 
C_  RR  ->  (  < 
Or  RR  ->  <  Or  Z ) )
1125, 107, 111mp2 17 . . . 4  |-  <  Or  Z
113112a1i 10 . . 3  |-  ( (
ph  /\  S  C_  NN )  ->  <  Or  Z
)
1146adantr 451 . . 3  |-  ( (
ph  /\  S  C_  NN )  ->  G : NN --> Z )
115 simpr 447 . . 3  |-  ( (
ph  /\  S  C_  NN )  ->  S  C_  NN )
116 soisores 5840 . . 3  |-  ( ( (  <  Or  NN  /\ 
<  Or  Z )  /\  ( G : NN --> Z  /\  S  C_  NN ) )  ->  (
( G  |`  S ) 
Isom  <  ,  <  ( S ,  ( G " S ) )  <->  A. x  e.  S  A. y  e.  S  ( x  <  y  ->  ( G `  x )  <  ( G `  y )
) ) )
117110, 113, 114, 115, 116syl22anc 1183 . 2  |-  ( (
ph  /\  S  C_  NN )  ->  ( ( G  |`  S )  Isom  <  ,  <  ( S , 
( G " S
) )  <->  A. x  e.  S  A. y  e.  S  ( x  <  y  ->  ( G `  x )  <  ( G `  y )
) ) )
118105, 117mpbird 223 1  |-  ( (
ph  /\  S  C_  NN )  ->  ( G  |`  S )  Isom  <  ,  <  ( S , 
( G " S
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556    C_ wss 3165   class class class wbr 4039    e. cmpt 4093    Or wor 4329    |` cres 4707   "cima 4708   -->wf 5267   ` cfv 5271    Isom wiso 5272  (class class class)co 5874   CCcc 8751   RRcr 8752   1c1 8754    + caddc 8756    < clt 8883    <_ cle 8884    - cmin 9053   NNcn 9762   ZZcz 10040   ZZ>=cuz 10246   ...cfz 10798
This theorem is referenced by:  isercolllem2  12155  isercolllem3  12156  isercoll  12157
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799
  Copyright terms: Public domain W3C validator