MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercolllem2 Unicode version

Theorem isercolllem2 12139
Description: Lemma for isercoll 12141. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll.z  |-  Z  =  ( ZZ>= `  M )
isercoll.m  |-  ( ph  ->  M  e.  ZZ )
isercoll.g  |-  ( ph  ->  G : NN --> Z )
isercoll.i  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  < 
( G `  (
k  +  1 ) ) )
Assertion
Ref Expression
isercolllem2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1 ... ( # `  ( G " ( `' G " ( M ... N
) ) ) ) )  =  ( `' G " ( M ... N ) ) )
Distinct variable groups:    k, N    ph, k    k, G    k, M
Allowed substitution hint:    Z( k)

Proof of Theorem isercolllem2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfznn 10819 . . . . . . . 8  |-  ( x  e.  ( 1 ...
sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  ->  x  e.  NN )
21a1i 10 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( x  e.  ( 1 ... sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )  ->  x  e.  NN )
)
3 cnvimass 5033 . . . . . . . . 9  |-  ( `' G " ( M ... N ) ) 
C_  dom  G
4 isercoll.g . . . . . . . . . . 11  |-  ( ph  ->  G : NN --> Z )
54adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  G : NN
--> Z )
6 fdm 5393 . . . . . . . . . 10  |-  ( G : NN --> Z  ->  dom  G  =  NN )
75, 6syl 15 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  dom  G  =  NN )
83, 7syl5sseq 3226 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  C_  NN )
98sseld 3179 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( x  e.  ( `' G "
( M ... N
) )  ->  x  e.  NN ) )
10 id 19 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  x  e.  NN )
11 nnuz 10263 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
1210, 11syl6eleq 2373 . . . . . . . . . 10  |-  ( x  e.  NN  ->  x  e.  ( ZZ>= `  1 )
)
13 ltso 8903 . . . . . . . . . . . . . 14  |-  <  Or  RR
1413a1i 10 . . . . . . . . . . . . 13  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  <  Or  RR )
15 fzfid 11035 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( M ... N )  e.  Fin )
16 ffun 5391 . . . . . . . . . . . . . . . . 17  |-  ( G : NN --> Z  ->  Fun  G )
17 funimacnv 5324 . . . . . . . . . . . . . . . . 17  |-  ( Fun 
G  ->  ( G " ( `' G "
( M ... N
) ) )  =  ( ( M ... N )  i^i  ran  G ) )
185, 16, 173syl 18 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G " ( `' G "
( M ... N
) ) )  =  ( ( M ... N )  i^i  ran  G ) )
19 inss1 3389 . . . . . . . . . . . . . . . . 17  |-  ( ( M ... N )  i^i  ran  G )  C_  ( M ... N
)
2019a1i 10 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( ( M ... N )  i^i 
ran  G )  C_  ( M ... N ) )
2118, 20eqsstrd 3212 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G " ( `' G "
( M ... N
) ) )  C_  ( M ... N ) )
22 ssfi 7083 . . . . . . . . . . . . . . 15  |-  ( ( ( M ... N
)  e.  Fin  /\  ( G " ( `' G " ( M ... N ) ) )  C_  ( M ... N ) )  -> 
( G " ( `' G " ( M ... N ) ) )  e.  Fin )
2315, 21, 22syl2anc 642 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G " ( `' G "
( M ... N
) ) )  e. 
Fin )
24 ssid 3197 . . . . . . . . . . . . . . . . . . . . . 22  |-  NN  C_  NN
25 isercoll.z . . . . . . . . . . . . . . . . . . . . . . 23  |-  Z  =  ( ZZ>= `  M )
26 isercoll.m . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  M  e.  ZZ )
27 isercoll.i . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  < 
( G `  (
k  +  1 ) ) )
2825, 26, 4, 27isercolllem1 12138 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  NN  C_  NN )  ->  ( G  |`  NN )  Isom  <  ,  <  ( NN ,  ( G " NN ) ) )
2924, 28mpan2 652 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( G  |`  NN ) 
Isom  <  ,  <  ( NN ,  ( G " NN ) ) )
30 ffn 5389 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( G : NN --> Z  ->  G  Fn  NN )
314, 30syl 15 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  G  Fn  NN )
32 fnresdm 5353 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( G  Fn  NN  ->  ( G  |`  NN )  =  G )
3331, 32syl 15 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( G  |`  NN )  =  G )
34 isoeq1 5816 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( G  |`  NN )  =  G  ->  ( ( G  |`  NN )  Isom  <  ,  <  ( NN ,  ( G " NN ) )  <->  G  Isom  <  ,  <  ( NN , 
( G " NN ) ) ) )
3533, 34syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( ( G  |`  NN )  Isom  <  ,  <  ( NN ,  ( G " NN ) )  <->  G  Isom  <  ,  <  ( NN ,  ( G " NN ) ) ) )
3629, 35mpbid 201 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  G  Isom  <  ,  <  ( NN ,  ( G
" NN ) ) )
37 isof1o 5822 . . . . . . . . . . . . . . . . . . . 20  |-  ( G 
Isom  <  ,  <  ( NN ,  ( G " NN ) )  ->  G : NN -1-1-onto-> ( G " NN ) )
3836, 37syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  G : NN -1-1-onto-> ( G " NN ) )
39 f1ocnv 5485 . . . . . . . . . . . . . . . . . . 19  |-  ( G : NN -1-1-onto-> ( G " NN )  ->  `' G :
( G " NN )
-1-1-onto-> NN )
40 f1ofun 5474 . . . . . . . . . . . . . . . . . . 19  |-  ( `' G : ( G
" NN ) -1-1-onto-> NN  ->  Fun  `' G )
4138, 39, 403syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  Fun  `' G )
42 df-f1 5260 . . . . . . . . . . . . . . . . . 18  |-  ( G : NN -1-1-> Z  <->  ( G : NN --> Z  /\  Fun  `' G ) )
434, 41, 42sylanbrc 645 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  G : NN -1-1-> Z
)
4443adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  G : NN
-1-1-> Z )
45 nnex 9752 . . . . . . . . . . . . . . . . 17  |-  NN  e.  _V
46 ssexg 4160 . . . . . . . . . . . . . . . . 17  |-  ( ( ( `' G "
( M ... N
) )  C_  NN  /\  NN  e.  _V )  ->  ( `' G "
( M ... N
) )  e.  _V )
478, 45, 46sylancl 643 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  e. 
_V )
48 f1imaeng 6921 . . . . . . . . . . . . . . . 16  |-  ( ( G : NN -1-1-> Z  /\  ( `' G "
( M ... N
) )  C_  NN  /\  ( `' G "
( M ... N
) )  e.  _V )  ->  ( G "
( `' G "
( M ... N
) ) )  ~~  ( `' G " ( M ... N ) ) )
4944, 8, 47, 48syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G " ( `' G "
( M ... N
) ) )  ~~  ( `' G " ( M ... N ) ) )
50 ensym 6910 . . . . . . . . . . . . . . 15  |-  ( ( G " ( `' G " ( M ... N ) ) )  ~~  ( `' G " ( M ... N ) )  ->  ( `' G " ( M ... N
) )  ~~  ( G " ( `' G " ( M ... N
) ) ) )
5149, 50syl 15 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  ~~  ( G " ( `' G " ( M ... N ) ) ) )
52 enfii 7080 . . . . . . . . . . . . . 14  |-  ( ( ( G " ( `' G " ( M ... N ) ) )  e.  Fin  /\  ( `' G " ( M ... N ) ) 
~~  ( G "
( `' G "
( M ... N
) ) ) )  ->  ( `' G " ( M ... N
) )  e.  Fin )
5323, 51, 52syl2anc 642 . . . . . . . . . . . . 13  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  e. 
Fin )
54 1nn 9757 . . . . . . . . . . . . . . . 16  |-  1  e.  NN
5554a1i 10 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  1  e.  NN )
56 ffvelrn 5663 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G : NN --> Z  /\  1  e.  NN )  ->  ( G `  1
)  e.  Z )
574, 54, 56sylancl 643 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( G `  1
)  e.  Z )
5857, 25syl6eleq 2373 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( G `  1
)  e.  ( ZZ>= `  M ) )
5958adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  1 )  e.  ( ZZ>= `  M )
)
60 simpr 447 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  N  e.  ( ZZ>= `  ( G `  1 ) ) )
61 elfzuzb 10792 . . . . . . . . . . . . . . . 16  |-  ( ( G `  1 )  e.  ( M ... N )  <->  ( ( G `  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  ( G ` 
1 ) ) ) )
6259, 60, 61sylanbrc 645 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  1 )  e.  ( M ... N
) )
635, 30syl 15 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  G  Fn  NN )
64 elpreima 5645 . . . . . . . . . . . . . . . 16  |-  ( G  Fn  NN  ->  (
1  e.  ( `' G " ( M ... N ) )  <-> 
( 1  e.  NN  /\  ( G `  1
)  e.  ( M ... N ) ) ) )
6563, 64syl 15 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1  e.  ( `' G " ( M ... N
) )  <->  ( 1  e.  NN  /\  ( G `  1 )  e.  ( M ... N
) ) ) )
6655, 62, 65mpbir2and 888 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  1  e.  ( `' G " ( M ... N ) ) )
67 ne0i 3461 . . . . . . . . . . . . . 14  |-  ( 1  e.  ( `' G " ( M ... N
) )  ->  ( `' G " ( M ... N ) )  =/=  (/) )
6866, 67syl 15 . . . . . . . . . . . . 13  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  =/=  (/) )
69 nnssre 9750 . . . . . . . . . . . . . 14  |-  NN  C_  RR
708, 69syl6ss 3191 . . . . . . . . . . . . 13  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  C_  RR )
71 fisupcl 7218 . . . . . . . . . . . . 13  |-  ( (  <  Or  RR  /\  ( ( `' G " ( M ... N
) )  e.  Fin  /\  ( `' G "
( M ... N
) )  =/=  (/)  /\  ( `' G " ( M ... N ) ) 
C_  RR ) )  ->  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  )  e.  ( `' G " ( M ... N
) ) )
7214, 53, 68, 70, 71syl13anc 1184 . . . . . . . . . . . 12  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  e.  ( `' G " ( M ... N ) ) )
738, 72sseldd 3181 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  e.  NN )
7473nnzd 10116 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  e.  ZZ )
75 elfz5 10790 . . . . . . . . . 10  |-  ( ( x  e.  ( ZZ>= ` 
1 )  /\  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  ZZ )  ->  ( x  e.  ( 1 ... sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )  <->  x  <_  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) ) )
7612, 74, 75syl2anr 464 . . . . . . . . 9  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  e.  ( 1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <->  x  <_  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  ) ) )
77 elpreima 5645 . . . . . . . . . . . . . . . . . 18  |-  ( G  Fn  NN  ->  ( sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  ( `' G " ( M ... N ) )  <-> 
( sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  )  e.  NN  /\  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  ( M ... N ) ) ) )
7863, 77syl 15 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  ( `' G " ( M ... N ) )  <-> 
( sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  )  e.  NN  /\  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  ( M ... N ) ) ) )
7972, 78mpbid 201 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  NN  /\  ( G `  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )  e.  ( M ... N
) ) )
8079simprd 449 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  ( M ... N ) )
81 elfzle2 10800 . . . . . . . . . . . . . . 15  |-  ( ( G `  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  ) )  e.  ( M ... N
)  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <_  N )
8280, 81syl 15 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <_  N )
8382adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <_  N )
84 uzssz 10247 . . . . . . . . . . . . . . . . 17  |-  ( ZZ>= `  M )  C_  ZZ
8525, 84eqsstri 3208 . . . . . . . . . . . . . . . 16  |-  Z  C_  ZZ
86 zssre 10031 . . . . . . . . . . . . . . . 16  |-  ZZ  C_  RR
8785, 86sstri 3188 . . . . . . . . . . . . . . 15  |-  Z  C_  RR
88 ffvelrn 5663 . . . . . . . . . . . . . . . 16  |-  ( ( G : NN --> Z  /\  x  e.  NN )  ->  ( G `  x
)  e.  Z )
895, 88sylan 457 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  x )  e.  Z )
9087, 89sseldi 3178 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  x )  e.  RR )
91 ffvelrn 5663 . . . . . . . . . . . . . . . . 17  |-  ( ( G : NN --> Z  /\  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  NN )  ->  ( G `  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )  e.  Z )
925, 73, 91syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  Z )
9392adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  Z )
9487, 93sseldi 3178 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  RR )
95 eluzelz 10238 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( ZZ>= `  ( G `  1 )
)  ->  N  e.  ZZ )
9695ad2antlr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  N  e.  ZZ )
9786, 96sseldi 3178 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  N  e.  RR )
98 letr 8914 . . . . . . . . . . . . . 14  |-  ( ( ( G `  x
)  e.  RR  /\  ( G `  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  ) )  e.  RR  /\  N  e.  RR )  ->  (
( ( G `  x )  <_  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  /\  ( G `
 sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <_  N )  ->  ( G `  x
)  <_  N )
)
9990, 94, 97, 98syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
( ( G `  x )  <_  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  /\  ( G `
 sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <_  N )  ->  ( G `  x
)  <_  N )
)
10083, 99mpan2d 655 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
( G `  x
)  <_  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  ->  ( G `  x )  <_  N
) )
10136ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  G  Isom  <  ,  <  ( NN ,  ( G " NN ) ) )
10269a1i 10 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  NN  C_  RR )
103 ressxr 8876 . . . . . . . . . . . . . 14  |-  RR  C_  RR*
104102, 103syl6ss 3191 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  NN  C_ 
RR* )
105 imassrn 5025 . . . . . . . . . . . . . . . 16  |-  ( G
" NN )  C_  ran  G
1064ad2antrr 706 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  G : NN --> Z )
107 frn 5395 . . . . . . . . . . . . . . . . 17  |-  ( G : NN --> Z  ->  ran  G  C_  Z )
108106, 107syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ran  G 
C_  Z )
109105, 108syl5ss 3190 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G " NN )  C_  Z )
110109, 87syl6ss 3191 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G " NN )  C_  RR )
111110, 103syl6ss 3191 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G " NN )  C_  RR* )
112 simpr 447 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  x  e.  NN )
11373adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  NN )
114 leisorel 11398 . . . . . . . . . . . . 13  |-  ( ( G  Isom  <  ,  <  ( NN ,  ( G
" NN ) )  /\  ( NN  C_  RR* 
/\  ( G " NN )  C_  RR* )  /\  ( x  e.  NN  /\ 
sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  )  e.  NN ) )  ->  ( x  <_  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  <->  ( G `  x )  <_  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) ) )
115101, 104, 111, 112, 113, 114syl122anc 1191 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  <_  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  <->  ( G `  x )  <_  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) ) )
11689, 25syl6eleq 2373 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  x )  e.  ( ZZ>= `  M )
)
117 elfz5 10790 . . . . . . . . . . . . 13  |-  ( ( ( G `  x
)  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  (
( G `  x
)  e.  ( M ... N )  <->  ( G `  x )  <_  N
) )
118116, 96, 117syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
( G `  x
)  e.  ( M ... N )  <->  ( G `  x )  <_  N
) )
119100, 115, 1183imtr4d 259 . . . . . . . . . . 11  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  <_  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  ->  ( G `  x )  e.  ( M ... N
) ) )
120 elpreima 5645 . . . . . . . . . . . . 13  |-  ( G  Fn  NN  ->  (
x  e.  ( `' G " ( M ... N ) )  <-> 
( x  e.  NN  /\  ( G `  x
)  e.  ( M ... N ) ) ) )
121120baibd 875 . . . . . . . . . . . 12  |-  ( ( G  Fn  NN  /\  x  e.  NN )  ->  ( x  e.  ( `' G " ( M ... N ) )  <-> 
( G `  x
)  e.  ( M ... N ) ) )
12263, 121sylan 457 . . . . . . . . . . 11  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  e.  ( `' G " ( M ... N ) )  <-> 
( G `  x
)  e.  ( M ... N ) ) )
123119, 122sylibrd 225 . . . . . . . . . 10  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  <_  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  ->  x  e.  ( `' G "
( M ... N
) ) ) )
124 fimaxre2 9702 . . . . . . . . . . . . 13  |-  ( ( ( `' G "
( M ... N
) )  C_  RR  /\  ( `' G "
( M ... N
) )  e.  Fin )  ->  E. x  e.  RR  A. y  e.  ( `' G " ( M ... N ) ) y  <_  x )
12570, 53, 124syl2anc 642 . . . . . . . . . . . 12  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  E. x  e.  RR  A. y  e.  ( `' G "
( M ... N
) ) y  <_  x )
126 suprub 9715 . . . . . . . . . . . . 13  |-  ( ( ( ( `' G " ( M ... N
) )  C_  RR  /\  ( `' G "
( M ... N
) )  =/=  (/)  /\  E. x  e.  RR  A. y  e.  ( `' G "
( M ... N
) ) y  <_  x )  /\  x  e.  ( `' G "
( M ... N
) ) )  ->  x  <_  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )
127126ex 423 . . . . . . . . . . . 12  |-  ( ( ( `' G "
( M ... N
) )  C_  RR  /\  ( `' G "
( M ... N
) )  =/=  (/)  /\  E. x  e.  RR  A. y  e.  ( `' G "
( M ... N
) ) y  <_  x )  ->  (
x  e.  ( `' G " ( M ... N ) )  ->  x  <_  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) ) )
12870, 68, 125, 127syl3anc 1182 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( x  e.  ( `' G "
( M ... N
) )  ->  x  <_  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) )
129128adantr 451 . . . . . . . . . 10  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  e.  ( `' G " ( M ... N ) )  ->  x  <_  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) ) )
130123, 129impbid 183 . . . . . . . . 9  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  <_  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  <->  x  e.  ( `' G " ( M ... N ) ) ) )
13176, 130bitrd 244 . . . . . . . 8  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  e.  ( 1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <->  x  e.  ( `' G " ( M ... N ) ) ) )
132131ex 423 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( x  e.  NN  ->  ( x  e.  ( 1 ... sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )  <->  x  e.  ( `' G " ( M ... N ) ) ) ) )
1332, 9, 132pm5.21ndd 343 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( x  e.  ( 1 ... sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )  <->  x  e.  ( `' G " ( M ... N ) ) ) )
134133eqrdv 2281 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  =  ( `' G " ( M ... N ) ) )
135134fveq2d 5529 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( # `  (
1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) )  =  (
# `  ( `' G " ( M ... N ) ) ) )
13673nnnn0d 10018 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  e.  NN0 )
137 hashfz1 11345 . . . . 5  |-  ( sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  NN0  ->  ( # `  (
1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) )  =  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )
138136, 137syl 15 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( # `  (
1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) )  =  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )
139 hashen 11346 . . . . . 6  |-  ( ( ( `' G "
( M ... N
) )  e.  Fin  /\  ( G " ( `' G " ( M ... N ) ) )  e.  Fin )  ->  ( ( # `  ( `' G " ( M ... N ) ) )  =  ( # `  ( G " ( `' G " ( M ... N ) ) ) )  <->  ( `' G " ( M ... N ) )  ~~  ( G " ( `' G " ( M ... N ) ) ) ) )
14053, 23, 139syl2anc 642 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( ( # `
 ( `' G " ( M ... N
) ) )  =  ( # `  ( G " ( `' G " ( M ... N
) ) ) )  <-> 
( `' G "
( M ... N
) )  ~~  ( G " ( `' G " ( M ... N
) ) ) ) )
14151, 140mpbird 223 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( # `  ( `' G " ( M ... N ) ) )  =  ( # `  ( G " ( `' G " ( M ... N ) ) ) ) )
142135, 138, 1413eqtr3d 2323 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  =  (
# `  ( G " ( `' G "
( M ... N
) ) ) ) )
143142oveq2d 5874 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  =  ( 1 ... ( # `  ( G " ( `' G " ( M ... N
) ) ) ) ) )
144143, 134eqtr3d 2317 1  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1 ... ( # `  ( G " ( `' G " ( M ... N
) ) ) ) )  =  ( `' G " ( M ... N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   _Vcvv 2788    i^i cin 3151    C_ wss 3152   (/)c0 3455   class class class wbr 4023    Or wor 4313   `'ccnv 4688   dom cdm 4689   ran crn 4690    |` cres 4691   "cima 4692   Fun wfun 5249    Fn wfn 5250   -->wf 5251   -1-1->wf1 5252   -1-1-onto->wf1o 5254   ` cfv 5255    Isom wiso 5256  (class class class)co 5858    ~~ cen 6860   Fincfn 6863   supcsup 7193   RRcr 8736   1c1 8738    + caddc 8740   RR*cxr 8866    < clt 8867    <_ cle 8868   NNcn 9746   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782   #chash 11337
This theorem is referenced by:  isercolllem3  12140
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-hash 11338
  Copyright terms: Public domain W3C validator