MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isercolllem2 Structured version   Unicode version

Theorem isercolllem2 12464
Description: Lemma for isercoll 12466. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypotheses
Ref Expression
isercoll.z  |-  Z  =  ( ZZ>= `  M )
isercoll.m  |-  ( ph  ->  M  e.  ZZ )
isercoll.g  |-  ( ph  ->  G : NN --> Z )
isercoll.i  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  < 
( G `  (
k  +  1 ) ) )
Assertion
Ref Expression
isercolllem2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1 ... ( # `  ( G " ( `' G " ( M ... N
) ) ) ) )  =  ( `' G " ( M ... N ) ) )
Distinct variable groups:    k, N    ph, k    k, G    k, M
Allowed substitution hint:    Z( k)

Proof of Theorem isercolllem2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfznn 11085 . . . . . . . 8  |-  ( x  e.  ( 1 ...
sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  ->  x  e.  NN )
21a1i 11 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( x  e.  ( 1 ... sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )  ->  x  e.  NN )
)
3 cnvimass 5227 . . . . . . . . 9  |-  ( `' G " ( M ... N ) ) 
C_  dom  G
4 isercoll.g . . . . . . . . . . 11  |-  ( ph  ->  G : NN --> Z )
54adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  G : NN
--> Z )
6 fdm 5598 . . . . . . . . . 10  |-  ( G : NN --> Z  ->  dom  G  =  NN )
75, 6syl 16 . . . . . . . . 9  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  dom  G  =  NN )
83, 7syl5sseq 3398 . . . . . . . 8  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  C_  NN )
98sseld 3349 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( x  e.  ( `' G "
( M ... N
) )  ->  x  e.  NN ) )
10 id 21 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  x  e.  NN )
11 nnuz 10526 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
1210, 11syl6eleq 2528 . . . . . . . . . 10  |-  ( x  e.  NN  ->  x  e.  ( ZZ>= `  1 )
)
13 ltso 9161 . . . . . . . . . . . . . 14  |-  <  Or  RR
1413a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  <  Or  RR )
15 fzfid 11317 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( M ... N )  e.  Fin )
16 ffun 5596 . . . . . . . . . . . . . . . . 17  |-  ( G : NN --> Z  ->  Fun  G )
17 funimacnv 5528 . . . . . . . . . . . . . . . . 17  |-  ( Fun 
G  ->  ( G " ( `' G "
( M ... N
) ) )  =  ( ( M ... N )  i^i  ran  G ) )
185, 16, 173syl 19 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G " ( `' G "
( M ... N
) ) )  =  ( ( M ... N )  i^i  ran  G ) )
19 inss1 3563 . . . . . . . . . . . . . . . 16  |-  ( ( M ... N )  i^i  ran  G )  C_  ( M ... N
)
2018, 19syl6eqss 3400 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G " ( `' G "
( M ... N
) ) )  C_  ( M ... N ) )
21 ssfi 7332 . . . . . . . . . . . . . . 15  |-  ( ( ( M ... N
)  e.  Fin  /\  ( G " ( `' G " ( M ... N ) ) )  C_  ( M ... N ) )  -> 
( G " ( `' G " ( M ... N ) ) )  e.  Fin )
2215, 20, 21syl2anc 644 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G " ( `' G "
( M ... N
) ) )  e. 
Fin )
23 ssid 3369 . . . . . . . . . . . . . . . . . . . . 21  |-  NN  C_  NN
24 isercoll.z . . . . . . . . . . . . . . . . . . . . . 22  |-  Z  =  ( ZZ>= `  M )
25 isercoll.m . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  M  e.  ZZ )
26 isercoll.i . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  < 
( G `  (
k  +  1 ) ) )
2724, 25, 4, 26isercolllem1 12463 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  NN  C_  NN )  ->  ( G  |`  NN )  Isom  <  ,  <  ( NN ,  ( G " NN ) ) )
2823, 27mpan2 654 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( G  |`  NN ) 
Isom  <  ,  <  ( NN ,  ( G " NN ) ) )
29 ffn 5594 . . . . . . . . . . . . . . . . . . . . 21  |-  ( G : NN --> Z  ->  G  Fn  NN )
30 fnresdm 5557 . . . . . . . . . . . . . . . . . . . . 21  |-  ( G  Fn  NN  ->  ( G  |`  NN )  =  G )
31 isoeq1 6042 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( G  |`  NN )  =  G  ->  ( ( G  |`  NN )  Isom  <  ,  <  ( NN ,  ( G " NN ) )  <->  G  Isom  <  ,  <  ( NN , 
( G " NN ) ) ) )
324, 29, 30, 314syl 20 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( ( G  |`  NN )  Isom  <  ,  <  ( NN ,  ( G " NN ) )  <->  G  Isom  <  ,  <  ( NN ,  ( G " NN ) ) ) )
3328, 32mpbid 203 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  G  Isom  <  ,  <  ( NN ,  ( G
" NN ) ) )
34 isof1o 6048 . . . . . . . . . . . . . . . . . . 19  |-  ( G 
Isom  <  ,  <  ( NN ,  ( G " NN ) )  ->  G : NN -1-1-onto-> ( G " NN ) )
35 f1ocnv 5690 . . . . . . . . . . . . . . . . . . 19  |-  ( G : NN -1-1-onto-> ( G " NN )  ->  `' G :
( G " NN )
-1-1-onto-> NN )
36 f1ofun 5679 . . . . . . . . . . . . . . . . . . 19  |-  ( `' G : ( G
" NN ) -1-1-onto-> NN  ->  Fun  `' G )
3733, 34, 35, 364syl 20 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  Fun  `' G )
38 df-f1 5462 . . . . . . . . . . . . . . . . . 18  |-  ( G : NN -1-1-> Z  <->  ( G : NN --> Z  /\  Fun  `' G ) )
394, 37, 38sylanbrc 647 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  G : NN -1-1-> Z
)
4039adantr 453 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  G : NN
-1-1-> Z )
41 nnex 10011 . . . . . . . . . . . . . . . . 17  |-  NN  e.  _V
42 ssexg 4352 . . . . . . . . . . . . . . . . 17  |-  ( ( ( `' G "
( M ... N
) )  C_  NN  /\  NN  e.  _V )  ->  ( `' G "
( M ... N
) )  e.  _V )
438, 41, 42sylancl 645 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  e. 
_V )
44 f1imaeng 7170 . . . . . . . . . . . . . . . 16  |-  ( ( G : NN -1-1-> Z  /\  ( `' G "
( M ... N
) )  C_  NN  /\  ( `' G "
( M ... N
) )  e.  _V )  ->  ( G "
( `' G "
( M ... N
) ) )  ~~  ( `' G " ( M ... N ) ) )
4540, 8, 43, 44syl3anc 1185 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G " ( `' G "
( M ... N
) ) )  ~~  ( `' G " ( M ... N ) ) )
4645ensymd 7161 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  ~~  ( G " ( `' G " ( M ... N ) ) ) )
47 enfii 7329 . . . . . . . . . . . . . 14  |-  ( ( ( G " ( `' G " ( M ... N ) ) )  e.  Fin  /\  ( `' G " ( M ... N ) ) 
~~  ( G "
( `' G "
( M ... N
) ) ) )  ->  ( `' G " ( M ... N
) )  e.  Fin )
4822, 46, 47syl2anc 644 . . . . . . . . . . . . 13  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  e. 
Fin )
49 1nn 10016 . . . . . . . . . . . . . . . 16  |-  1  e.  NN
5049a1i 11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  1  e.  NN )
51 ffvelrn 5871 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G : NN --> Z  /\  1  e.  NN )  ->  ( G `  1
)  e.  Z )
524, 49, 51sylancl 645 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( G `  1
)  e.  Z )
5352, 24syl6eleq 2528 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( G `  1
)  e.  ( ZZ>= `  M ) )
5453adantr 453 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  1 )  e.  ( ZZ>= `  M )
)
55 simpr 449 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  N  e.  ( ZZ>= `  ( G `  1 ) ) )
56 elfzuzb 11058 . . . . . . . . . . . . . . . 16  |-  ( ( G `  1 )  e.  ( M ... N )  <->  ( ( G `  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  ( G ` 
1 ) ) ) )
5754, 55, 56sylanbrc 647 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  1 )  e.  ( M ... N
) )
585, 29syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  G  Fn  NN )
59 elpreima 5853 . . . . . . . . . . . . . . . 16  |-  ( G  Fn  NN  ->  (
1  e.  ( `' G " ( M ... N ) )  <-> 
( 1  e.  NN  /\  ( G `  1
)  e.  ( M ... N ) ) ) )
6058, 59syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1  e.  ( `' G " ( M ... N
) )  <->  ( 1  e.  NN  /\  ( G `  1 )  e.  ( M ... N
) ) ) )
6150, 57, 60mpbir2and 890 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  1  e.  ( `' G " ( M ... N ) ) )
62 ne0i 3636 . . . . . . . . . . . . . 14  |-  ( 1  e.  ( `' G " ( M ... N
) )  ->  ( `' G " ( M ... N ) )  =/=  (/) )
6361, 62syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  =/=  (/) )
64 nnssre 10009 . . . . . . . . . . . . . 14  |-  NN  C_  RR
658, 64syl6ss 3362 . . . . . . . . . . . . 13  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( `' G " ( M ... N ) )  C_  RR )
66 fisupcl 7475 . . . . . . . . . . . . 13  |-  ( (  <  Or  RR  /\  ( ( `' G " ( M ... N
) )  e.  Fin  /\  ( `' G "
( M ... N
) )  =/=  (/)  /\  ( `' G " ( M ... N ) ) 
C_  RR ) )  ->  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  )  e.  ( `' G " ( M ... N
) ) )
6714, 48, 63, 65, 66syl13anc 1187 . . . . . . . . . . . 12  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  e.  ( `' G " ( M ... N ) ) )
688, 67sseldd 3351 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  e.  NN )
6968nnzd 10379 . . . . . . . . . 10  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  e.  ZZ )
70 elfz5 11056 . . . . . . . . . 10  |-  ( ( x  e.  ( ZZ>= ` 
1 )  /\  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  ZZ )  ->  ( x  e.  ( 1 ... sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )  <->  x  <_  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) ) )
7112, 69, 70syl2anr 466 . . . . . . . . 9  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  e.  ( 1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <->  x  <_  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  ) ) )
72 elpreima 5853 . . . . . . . . . . . . . . . . . 18  |-  ( G  Fn  NN  ->  ( sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  ( `' G " ( M ... N ) )  <-> 
( sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  )  e.  NN  /\  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  ( M ... N ) ) ) )
7358, 72syl 16 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  ( `' G " ( M ... N ) )  <-> 
( sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  )  e.  NN  /\  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  ( M ... N ) ) ) )
7467, 73mpbid 203 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  NN  /\  ( G `  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )  e.  ( M ... N
) ) )
7574simprd 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  ( M ... N ) )
76 elfzle2 11066 . . . . . . . . . . . . . . 15  |-  ( ( G `  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  ) )  e.  ( M ... N
)  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <_  N )
7775, 76syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <_  N )
7877adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <_  N )
79 uzssz 10510 . . . . . . . . . . . . . . . . 17  |-  ( ZZ>= `  M )  C_  ZZ
8024, 79eqsstri 3380 . . . . . . . . . . . . . . . 16  |-  Z  C_  ZZ
81 zssre 10294 . . . . . . . . . . . . . . . 16  |-  ZZ  C_  RR
8280, 81sstri 3359 . . . . . . . . . . . . . . 15  |-  Z  C_  RR
835ffvelrnda 5873 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  x )  e.  Z )
8482, 83sseldi 3348 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  x )  e.  RR )
855, 68ffvelrnd 5874 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  Z )
8685adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  Z )
8782, 86sseldi 3348 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  e.  RR )
88 eluzelz 10501 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ( ZZ>= `  ( G `  1 )
)  ->  N  e.  ZZ )
8988ad2antlr 709 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  N  e.  ZZ )
9081, 89sseldi 3348 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  N  e.  RR )
91 letr 9172 . . . . . . . . . . . . . 14  |-  ( ( ( G `  x
)  e.  RR  /\  ( G `  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  ) )  e.  RR  /\  N  e.  RR )  ->  (
( ( G `  x )  <_  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  /\  ( G `
 sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <_  N )  ->  ( G `  x
)  <_  N )
)
9284, 87, 90, 91syl3anc 1185 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
( ( G `  x )  <_  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  /\  ( G `
 sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <_  N )  ->  ( G `  x
)  <_  N )
)
9378, 92mpan2d 657 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
( G `  x
)  <_  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  ->  ( G `  x )  <_  N
) )
9433ad2antrr 708 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  G  Isom  <  ,  <  ( NN ,  ( G " NN ) ) )
9564a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  NN  C_  RR )
96 ressxr 9134 . . . . . . . . . . . . . 14  |-  RR  C_  RR*
9795, 96syl6ss 3362 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  NN  C_ 
RR* )
98 imassrn 5219 . . . . . . . . . . . . . . . 16  |-  ( G
" NN )  C_  ran  G
994ad2antrr 708 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  G : NN --> Z )
100 frn 5600 . . . . . . . . . . . . . . . . 17  |-  ( G : NN --> Z  ->  ran  G  C_  Z )
10199, 100syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ran  G 
C_  Z )
10298, 101syl5ss 3361 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G " NN )  C_  Z )
103102, 82syl6ss 3362 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G " NN )  C_  RR )
104103, 96syl6ss 3362 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G " NN )  C_  RR* )
105 simpr 449 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  x  e.  NN )
10668adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  NN )
107 leisorel 11714 . . . . . . . . . . . . 13  |-  ( ( G  Isom  <  ,  <  ( NN ,  ( G
" NN ) )  /\  ( NN  C_  RR* 
/\  ( G " NN )  C_  RR* )  /\  ( x  e.  NN  /\ 
sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  )  e.  NN ) )  ->  ( x  <_  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  <->  ( G `  x )  <_  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) ) )
10894, 97, 104, 105, 106, 107syl122anc 1194 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  <_  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  <->  ( G `  x )  <_  ( G `  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) ) )
10983, 24syl6eleq 2528 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  ( G `  x )  e.  ( ZZ>= `  M )
)
110 elfz5 11056 . . . . . . . . . . . . 13  |-  ( ( ( G `  x
)  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  (
( G `  x
)  e.  ( M ... N )  <->  ( G `  x )  <_  N
) )
111109, 89, 110syl2anc 644 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
( G `  x
)  e.  ( M ... N )  <->  ( G `  x )  <_  N
) )
11293, 108, 1113imtr4d 261 . . . . . . . . . . 11  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  <_  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  ->  ( G `  x )  e.  ( M ... N
) ) )
113 elpreima 5853 . . . . . . . . . . . . 13  |-  ( G  Fn  NN  ->  (
x  e.  ( `' G " ( M ... N ) )  <-> 
( x  e.  NN  /\  ( G `  x
)  e.  ( M ... N ) ) ) )
114113baibd 877 . . . . . . . . . . . 12  |-  ( ( G  Fn  NN  /\  x  e.  NN )  ->  ( x  e.  ( `' G " ( M ... N ) )  <-> 
( G `  x
)  e.  ( M ... N ) ) )
11558, 114sylan 459 . . . . . . . . . . 11  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  e.  ( `' G " ( M ... N ) )  <-> 
( G `  x
)  e.  ( M ... N ) ) )
116112, 115sylibrd 227 . . . . . . . . . 10  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  <_  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  ->  x  e.  ( `' G "
( M ... N
) ) ) )
117 fimaxre2 9961 . . . . . . . . . . . . 13  |-  ( ( ( `' G "
( M ... N
) )  C_  RR  /\  ( `' G "
( M ... N
) )  e.  Fin )  ->  E. x  e.  RR  A. y  e.  ( `' G " ( M ... N ) ) y  <_  x )
11865, 48, 117syl2anc 644 . . . . . . . . . . . 12  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  E. x  e.  RR  A. y  e.  ( `' G "
( M ... N
) ) y  <_  x )
119 suprub 9974 . . . . . . . . . . . . 13  |-  ( ( ( ( `' G " ( M ... N
) )  C_  RR  /\  ( `' G "
( M ... N
) )  =/=  (/)  /\  E. x  e.  RR  A. y  e.  ( `' G "
( M ... N
) ) y  <_  x )  /\  x  e.  ( `' G "
( M ... N
) ) )  ->  x  <_  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )
120119ex 425 . . . . . . . . . . . 12  |-  ( ( ( `' G "
( M ... N
) )  C_  RR  /\  ( `' G "
( M ... N
) )  =/=  (/)  /\  E. x  e.  RR  A. y  e.  ( `' G "
( M ... N
) ) y  <_  x )  ->  (
x  e.  ( `' G " ( M ... N ) )  ->  x  <_  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) ) )
12165, 63, 118, 120syl3anc 1185 . . . . . . . . . . 11  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( x  e.  ( `' G "
( M ... N
) )  ->  x  <_  sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) )
122121adantr 453 . . . . . . . . . 10  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  e.  ( `' G " ( M ... N ) )  ->  x  <_  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) ) )
123116, 122impbid 185 . . . . . . . . 9  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  <_  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  <->  x  e.  ( `' G " ( M ... N ) ) ) )
12471, 123bitrd 246 . . . . . . . 8  |-  ( ( ( ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  /\  x  e.  NN )  ->  (
x  e.  ( 1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  <->  x  e.  ( `' G " ( M ... N ) ) ) )
125124ex 425 . . . . . . 7  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( x  e.  NN  ->  ( x  e.  ( 1 ... sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )  <->  x  e.  ( `' G " ( M ... N ) ) ) ) )
1262, 9, 125pm5.21ndd 345 . . . . . 6  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( x  e.  ( 1 ... sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )  <->  x  e.  ( `' G " ( M ... N ) ) ) )
127126eqrdv 2436 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  =  ( `' G " ( M ... N ) ) )
128127fveq2d 5735 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( # `  (
1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) )  =  (
# `  ( `' G " ( M ... N ) ) ) )
12968nnnn0d 10279 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  e.  NN0 )
130 hashfz1 11635 . . . . 5  |-  ( sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  )  e.  NN0  ->  ( # `  (
1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) )  =  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )
131129, 130syl 16 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( # `  (
1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) ) )  =  sup ( ( `' G " ( M ... N
) ) ,  RR ,  <  ) )
132 hashen 11636 . . . . . 6  |-  ( ( ( `' G "
( M ... N
) )  e.  Fin  /\  ( G " ( `' G " ( M ... N ) ) )  e.  Fin )  ->  ( ( # `  ( `' G " ( M ... N ) ) )  =  ( # `  ( G " ( `' G " ( M ... N ) ) ) )  <->  ( `' G " ( M ... N ) )  ~~  ( G " ( `' G " ( M ... N ) ) ) ) )
13348, 22, 132syl2anc 644 . . . . 5  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( ( # `
 ( `' G " ( M ... N
) ) )  =  ( # `  ( G " ( `' G " ( M ... N
) ) ) )  <-> 
( `' G "
( M ... N
) )  ~~  ( G " ( `' G " ( M ... N
) ) ) ) )
13446, 133mpbird 225 . . . 4  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( # `  ( `' G " ( M ... N ) ) )  =  ( # `  ( G " ( `' G " ( M ... N ) ) ) ) )
135128, 131, 1343eqtr3d 2478 . . 3  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  sup (
( `' G "
( M ... N
) ) ,  RR ,  <  )  =  (
# `  ( G " ( `' G "
( M ... N
) ) ) ) )
136135oveq2d 6100 . 2  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1 ... sup ( ( `' G " ( M ... N ) ) ,  RR ,  <  ) )  =  ( 1 ... ( # `  ( G " ( `' G " ( M ... N
) ) ) ) ) )
137136, 127eqtr3d 2472 1  |-  ( (
ph  /\  N  e.  ( ZZ>= `  ( G `  1 ) ) )  ->  ( 1 ... ( # `  ( G " ( `' G " ( M ... N
) ) ) ) )  =  ( `' G " ( M ... N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   E.wrex 2708   _Vcvv 2958    i^i cin 3321    C_ wss 3322   (/)c0 3630   class class class wbr 4215    Or wor 4505   `'ccnv 4880   dom cdm 4881   ran crn 4882    |` cres 4883   "cima 4884   Fun wfun 5451    Fn wfn 5452   -->wf 5453   -1-1->wf1 5454   -1-1-onto->wf1o 5456   ` cfv 5457    Isom wiso 5458  (class class class)co 6084    ~~ cen 7109   Fincfn 7112   supcsup 7448   RRcr 8994   1c1 8996    + caddc 8998   RR*cxr 9124    < clt 9125    <_ cle 9126   NNcn 10005   NN0cn0 10226   ZZcz 10287   ZZ>=cuz 10493   ...cfz 11048   #chash 11623
This theorem is referenced by:  isercolllem3  12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-card 7831  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-nn 10006  df-n0 10227  df-z 10288  df-uz 10494  df-fz 11049  df-hash 11624
  Copyright terms: Public domain W3C validator