MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iserd Unicode version

Theorem iserd 6702
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
iserd.1  |-  ( ph  ->  Rel  R )
iserd.2  |-  ( (
ph  /\  x R
y )  ->  y R x )
iserd.3  |-  ( (
ph  /\  ( x R y  /\  y R z ) )  ->  x R z )
iserd.4  |-  ( ph  ->  ( x  e.  A  <->  x R x ) )
Assertion
Ref Expression
iserd  |-  ( ph  ->  R  Er  A )
Distinct variable groups:    x, y,
z, R    x, A    ph, x, y, z
Allowed substitution hints:    A( y, z)

Proof of Theorem iserd
StepHypRef Expression
1 iserd.1 . . 3  |-  ( ph  ->  Rel  R )
2 eqidd 2297 . . 3  |-  ( ph  ->  dom  R  =  dom  R )
3 iserd.2 . . . . . . . 8  |-  ( (
ph  /\  x R
y )  ->  y R x )
43ex 423 . . . . . . 7  |-  ( ph  ->  ( x R y  ->  y R x ) )
5 iserd.3 . . . . . . . 8  |-  ( (
ph  /\  ( x R y  /\  y R z ) )  ->  x R z )
65ex 423 . . . . . . 7  |-  ( ph  ->  ( ( x R y  /\  y R z )  ->  x R z ) )
74, 6jca 518 . . . . . 6  |-  ( ph  ->  ( ( x R y  ->  y R x )  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) )
87alrimiv 1621 . . . . 5  |-  ( ph  ->  A. z ( ( x R y  -> 
y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
98alrimiv 1621 . . . 4  |-  ( ph  ->  A. y A. z
( ( x R y  ->  y R x )  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) )
109alrimiv 1621 . . 3  |-  ( ph  ->  A. x A. y A. z ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
11 dfer2 6677 . . 3  |-  ( R  Er  dom  R  <->  ( Rel  R  /\  dom  R  =  dom  R  /\  A. x A. y A. z
( ( x R y  ->  y R x )  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) ) )
121, 2, 10, 11syl3anbrc 1136 . 2  |-  ( ph  ->  R  Er  dom  R
)
1312adantr 451 . . . . . . . 8  |-  ( (
ph  /\  x  e.  dom  R )  ->  R  Er  dom  R )
14 simpr 447 . . . . . . . 8  |-  ( (
ph  /\  x  e.  dom  R )  ->  x  e.  dom  R )
1513, 14erref 6696 . . . . . . 7  |-  ( (
ph  /\  x  e.  dom  R )  ->  x R x )
1615ex 423 . . . . . 6  |-  ( ph  ->  ( x  e.  dom  R  ->  x R x ) )
17 vex 2804 . . . . . . 7  |-  x  e. 
_V
1817, 17breldm 4899 . . . . . 6  |-  ( x R x  ->  x  e.  dom  R )
1916, 18impbid1 194 . . . . 5  |-  ( ph  ->  ( x  e.  dom  R  <-> 
x R x ) )
20 iserd.4 . . . . 5  |-  ( ph  ->  ( x  e.  A  <->  x R x ) )
2119, 20bitr4d 247 . . . 4  |-  ( ph  ->  ( x  e.  dom  R  <-> 
x  e.  A ) )
2221eqrdv 2294 . . 3  |-  ( ph  ->  dom  R  =  A )
23 ereq2 6684 . . 3  |-  ( dom 
R  =  A  -> 
( R  Er  dom  R  <-> 
R  Er  A ) )
2422, 23syl 15 . 2  |-  ( ph  ->  ( R  Er  dom  R  <-> 
R  Er  A ) )
2512, 24mpbid 201 1  |-  ( ph  ->  R  Er  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1530    = wceq 1632    e. wcel 1696   class class class wbr 4039   dom cdm 4705   Rel wrel 4710    Er wer 6673
This theorem is referenced by:  swoer  6704  eqer  6709  0er  6711  iiner  6747  erinxp  6749  ecopover  6778  ener  6924  eqger  14683  gicer  14756  gaorber  14778  efgrelexlemb  15075  efgcpbllemb  15080  hmpher  17491  xmeter  17995  phtpcer  18509  vitalilem1  18979
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-er 6676
  Copyright terms: Public domain W3C validator