MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iserd Structured version   Unicode version

Theorem iserd 6931
Description: A reflexive, symmetric, transitive relation is an equivalence relation on its domain. (Contributed by Mario Carneiro, 9-Jul-2014.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
iserd.1  |-  ( ph  ->  Rel  R )
iserd.2  |-  ( (
ph  /\  x R
y )  ->  y R x )
iserd.3  |-  ( (
ph  /\  ( x R y  /\  y R z ) )  ->  x R z )
iserd.4  |-  ( ph  ->  ( x  e.  A  <->  x R x ) )
Assertion
Ref Expression
iserd  |-  ( ph  ->  R  Er  A )
Distinct variable groups:    x, y,
z, R    x, A    ph, x, y, z
Allowed substitution hints:    A( y, z)

Proof of Theorem iserd
StepHypRef Expression
1 iserd.1 . . 3  |-  ( ph  ->  Rel  R )
2 eqidd 2437 . . 3  |-  ( ph  ->  dom  R  =  dom  R )
3 iserd.2 . . . . . . . 8  |-  ( (
ph  /\  x R
y )  ->  y R x )
43ex 424 . . . . . . 7  |-  ( ph  ->  ( x R y  ->  y R x ) )
5 iserd.3 . . . . . . . 8  |-  ( (
ph  /\  ( x R y  /\  y R z ) )  ->  x R z )
65ex 424 . . . . . . 7  |-  ( ph  ->  ( ( x R y  /\  y R z )  ->  x R z ) )
74, 6jca 519 . . . . . 6  |-  ( ph  ->  ( ( x R y  ->  y R x )  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) )
87alrimiv 1641 . . . . 5  |-  ( ph  ->  A. z ( ( x R y  -> 
y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
98alrimiv 1641 . . . 4  |-  ( ph  ->  A. y A. z
( ( x R y  ->  y R x )  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) )
109alrimiv 1641 . . 3  |-  ( ph  ->  A. x A. y A. z ( ( x R y  ->  y R x )  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
11 dfer2 6906 . . 3  |-  ( R  Er  dom  R  <->  ( Rel  R  /\  dom  R  =  dom  R  /\  A. x A. y A. z
( ( x R y  ->  y R x )  /\  (
( x R y  /\  y R z )  ->  x R
z ) ) ) )
121, 2, 10, 11syl3anbrc 1138 . 2  |-  ( ph  ->  R  Er  dom  R
)
1312adantr 452 . . . . . . . 8  |-  ( (
ph  /\  x  e.  dom  R )  ->  R  Er  dom  R )
14 simpr 448 . . . . . . . 8  |-  ( (
ph  /\  x  e.  dom  R )  ->  x  e.  dom  R )
1513, 14erref 6925 . . . . . . 7  |-  ( (
ph  /\  x  e.  dom  R )  ->  x R x )
1615ex 424 . . . . . 6  |-  ( ph  ->  ( x  e.  dom  R  ->  x R x ) )
17 vex 2959 . . . . . . 7  |-  x  e. 
_V
1817, 17breldm 5074 . . . . . 6  |-  ( x R x  ->  x  e.  dom  R )
1916, 18impbid1 195 . . . . 5  |-  ( ph  ->  ( x  e.  dom  R  <-> 
x R x ) )
20 iserd.4 . . . . 5  |-  ( ph  ->  ( x  e.  A  <->  x R x ) )
2119, 20bitr4d 248 . . . 4  |-  ( ph  ->  ( x  e.  dom  R  <-> 
x  e.  A ) )
2221eqrdv 2434 . . 3  |-  ( ph  ->  dom  R  =  A )
23 ereq2 6913 . . 3  |-  ( dom 
R  =  A  -> 
( R  Er  dom  R  <-> 
R  Er  A ) )
2422, 23syl 16 . 2  |-  ( ph  ->  ( R  Er  dom  R  <-> 
R  Er  A ) )
2512, 24mpbid 202 1  |-  ( ph  ->  R  Er  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1549    = wceq 1652    e. wcel 1725   class class class wbr 4212   dom cdm 4878   Rel wrel 4883    Er wer 6902
This theorem is referenced by:  swoer  6933  eqer  6938  0er  6940  iiner  6976  erinxp  6978  ecopover  7008  ener  7154  eqger  14990  gicer  15063  gaorber  15085  efgrelexlemb  15382  efgcpbllemb  15387  hmpher  17816  xmeter  18463  phtpcer  19020  vitalilem1  19500  metider  24289
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-er 6905
  Copyright terms: Public domain W3C validator