MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iserodd Unicode version

Theorem iserodd 12888
Description: Collect the odd terms in a sequence. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
iserodd.f  |-  ( (
ph  /\  k  e.  NN0 )  ->  C  e.  CC )
iserodd.h  |-  ( n  =  ( ( 2  x.  k )  +  1 )  ->  B  =  C )
Assertion
Ref Expression
iserodd  |-  ( ph  ->  (  seq  0 (  +  ,  ( k  e.  NN0  |->  C ) )  ~~>  A  <->  seq  1
(  +  ,  ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) )  ~~>  A ) )
Distinct variable groups:    B, k    C, n    k, n, ph
Allowed substitution hints:    A( k, n)    B( n)    C( k)

Proof of Theorem iserodd
Dummy variables  i 
j  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 10262 . 2  |-  NN0  =  ( ZZ>= `  0 )
2 nnuz 10263 . 2  |-  NN  =  ( ZZ>= `  1 )
3 0z 10035 . . 3  |-  0  e.  ZZ
43a1i 10 . 2  |-  ( ph  ->  0  e.  ZZ )
5 1z 10053 . . 3  |-  1  e.  ZZ
65a1i 10 . 2  |-  ( ph  ->  1  e.  ZZ )
7 2nn0 9982 . . . . . 6  |-  2  e.  NN0
87a1i 10 . . . . 5  |-  ( ph  ->  2  e.  NN0 )
9 nn0mulcl 10000 . . . . 5  |-  ( ( 2  e.  NN0  /\  m  e.  NN0 )  -> 
( 2  x.  m
)  e.  NN0 )
108, 9sylan 457 . . . 4  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( 2  x.  m )  e. 
NN0 )
11 nn0p1nn 10003 . . . 4  |-  ( ( 2  x.  m )  e.  NN0  ->  ( ( 2  x.  m )  +  1 )  e.  NN )
1210, 11syl 15 . . 3  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
2  x.  m )  +  1 )  e.  NN )
13 eqid 2283 . . 3  |-  ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) )  =  ( m  e. 
NN0  |->  ( ( 2  x.  m )  +  1 ) )
1412, 13fmptd 5684 . 2  |-  ( ph  ->  ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) : NN0 --> NN )
15 nn0mulcl 10000 . . . . . 6  |-  ( ( 2  e.  NN0  /\  i  e.  NN0 )  -> 
( 2  x.  i
)  e.  NN0 )
168, 15sylan 457 . . . . 5  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( 2  x.  i )  e. 
NN0 )
1716nn0red 10019 . . . 4  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( 2  x.  i )  e.  RR )
18 peano2nn0 10004 . . . . . 6  |-  ( i  e.  NN0  ->  ( i  +  1 )  e. 
NN0 )
19 nn0mulcl 10000 . . . . . 6  |-  ( ( 2  e.  NN0  /\  ( i  +  1 )  e.  NN0 )  ->  ( 2  x.  (
i  +  1 ) )  e.  NN0 )
208, 18, 19syl2an 463 . . . . 5  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( 2  x.  ( i  +  1 ) )  e. 
NN0 )
2120nn0red 10019 . . . 4  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( 2  x.  ( i  +  1 ) )  e.  RR )
22 1re 8837 . . . . 5  |-  1  e.  RR
2322a1i 10 . . . 4  |-  ( (
ph  /\  i  e.  NN0 )  ->  1  e.  RR )
24 nn0re 9974 . . . . . . 7  |-  ( i  e.  NN0  ->  i  e.  RR )
2524adantl 452 . . . . . 6  |-  ( (
ph  /\  i  e.  NN0 )  ->  i  e.  RR )
2625ltp1d 9687 . . . . 5  |-  ( (
ph  /\  i  e.  NN0 )  ->  i  <  ( i  +  1 ) )
2718adantl 452 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( i  +  1 )  e. 
NN0 )
2827nn0red 10019 . . . . . 6  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( i  +  1 )  e.  RR )
29 2re 9815 . . . . . . 7  |-  2  e.  RR
3029a1i 10 . . . . . 6  |-  ( (
ph  /\  i  e.  NN0 )  ->  2  e.  RR )
31 2pos 9828 . . . . . . 7  |-  0  <  2
3231a1i 10 . . . . . 6  |-  ( (
ph  /\  i  e.  NN0 )  ->  0  <  2 )
33 ltmul2 9607 . . . . . 6  |-  ( ( i  e.  RR  /\  ( i  +  1 )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( i  <  ( i  +  1 )  <->  ( 2  x.  i )  <  (
2  x.  ( i  +  1 ) ) ) )
3425, 28, 30, 32, 33syl112anc 1186 . . . . 5  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( i  <  ( i  +  1 )  <->  ( 2  x.  i )  <  (
2  x.  ( i  +  1 ) ) ) )
3526, 34mpbid 201 . . . 4  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( 2  x.  i )  < 
( 2  x.  (
i  +  1 ) ) )
3617, 21, 23, 35ltadd1dd 9383 . . 3  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( (
2  x.  i )  +  1 )  < 
( ( 2  x.  ( i  +  1 ) )  +  1 ) )
37 oveq2 5866 . . . . . 6  |-  ( m  =  i  ->  (
2  x.  m )  =  ( 2  x.  i ) )
3837oveq1d 5873 . . . . 5  |-  ( m  =  i  ->  (
( 2  x.  m
)  +  1 )  =  ( ( 2  x.  i )  +  1 ) )
39 ovex 5883 . . . . 5  |-  ( ( 2  x.  i )  +  1 )  e. 
_V
4038, 13, 39fvmpt 5602 . . . 4  |-  ( i  e.  NN0  ->  ( ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `
 i )  =  ( ( 2  x.  i )  +  1 ) )
4140adantl 452 . . 3  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `
 i )  =  ( ( 2  x.  i )  +  1 ) )
42 oveq2 5866 . . . . . 6  |-  ( m  =  ( i  +  1 )  ->  (
2  x.  m )  =  ( 2  x.  ( i  +  1 ) ) )
4342oveq1d 5873 . . . . 5  |-  ( m  =  ( i  +  1 )  ->  (
( 2  x.  m
)  +  1 )  =  ( ( 2  x.  ( i  +  1 ) )  +  1 ) )
44 ovex 5883 . . . . 5  |-  ( ( 2  x.  ( i  +  1 ) )  +  1 )  e. 
_V
4543, 13, 44fvmpt 5602 . . . 4  |-  ( ( i  +  1 )  e.  NN0  ->  ( ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `
 ( i  +  1 ) )  =  ( ( 2  x.  ( i  +  1 ) )  +  1 ) )
4627, 45syl 15 . . 3  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `
 ( i  +  1 ) )  =  ( ( 2  x.  ( i  +  1 ) )  +  1 ) )
4736, 41, 463brtr4d 4053 . 2  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `
 i )  < 
( ( m  e. 
NN0  |->  ( ( 2  x.  m )  +  1 ) ) `  ( i  +  1 ) ) )
48 eldifi 3298 . . . . . . 7  |-  ( n  e.  ( NN  \  ran  ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) )  ->  n  e.  NN )
49 simpr 447 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  NN )
50 0cn 8831 . . . . . . . . . 10  |-  0  e.  CC
5150a1i 10 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  2  ||  n )  ->  0  e.  CC )
52 nnz 10045 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  n  e.  ZZ )
5352adantl 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  ZZ )
54 odd2np1 12587 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  ( -.  2  ||  n  <->  E. k  e.  ZZ  ( ( 2  x.  k )  +  1 )  =  n ) )
5553, 54syl 15 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( -.  2  ||  n  <->  E. k  e.  ZZ  ( ( 2  x.  k )  +  1 )  =  n ) )
56 simprl 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  k  e.  ZZ )
57 nnm1nn0 10005 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  NN  ->  (
n  -  1 )  e.  NN0 )
5857ad2antlr 707 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  ( n  -  1 )  e. 
NN0 )
5958nn0red 10019 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  ( n  -  1 )  e.  RR )
6058nn0ge0d 10021 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  0  <_  ( n  -  1 ) )
6129a1i 10 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  2  e.  RR )
6231a1i 10 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  0  <  2 )
63 divge0 9625 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  - 
1 )  e.  RR  /\  0  <_  ( n  -  1 ) )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <_  ( (
n  -  1 )  /  2 ) )
6459, 60, 61, 62, 63syl22anc 1183 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  0  <_  ( ( n  -  1 )  /  2 ) )
65 simprr 733 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  ( (
2  x.  k )  +  1 )  =  n )
6665oveq1d 5873 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  ( (
( 2  x.  k
)  +  1 )  -  1 )  =  ( n  -  1 ) )
67 2cn 9816 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  e.  CC
68 zcn 10029 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  ZZ  ->  k  e.  CC )
6968ad2antrl 708 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  k  e.  CC )
70 mulcl 8821 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2  e.  CC  /\  k  e.  CC )  ->  ( 2  x.  k
)  e.  CC )
7167, 69, 70sylancr 644 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  ( 2  x.  k )  e.  CC )
72 ax-1cn 8795 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  CC
73 pncan 9057 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 2  x.  k
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2  x.  k )  +  1 )  -  1 )  =  ( 2  x.  k ) )
7471, 72, 73sylancl 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  ( (
( 2  x.  k
)  +  1 )  -  1 )  =  ( 2  x.  k
) )
7566, 74eqtr3d 2317 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  ( n  -  1 )  =  ( 2  x.  k
) )
7675oveq1d 5873 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  ( (
n  -  1 )  /  2 )  =  ( ( 2  x.  k )  /  2
) )
7767a1i 10 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  2  e.  CC )
78 2ne0 9829 . . . . . . . . . . . . . . . . . . . 20  |-  2  =/=  0
7978a1i 10 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  2  =/=  0 )
8069, 77, 79divcan3d 9541 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  ( (
2  x.  k )  /  2 )  =  k )
8176, 80eqtrd 2315 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  ( (
n  -  1 )  /  2 )  =  k )
8264, 81breqtrd 4047 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  0  <_  k )
83 elnn0z 10036 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  <->  ( k  e.  ZZ  /\  0  <_ 
k ) )
8456, 82, 83sylanbrc 645 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  k  e.  NN0 )
8584ex 423 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n )  ->  k  e.  NN0 ) )
86 simpr 447 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n )  ->  ( ( 2  x.  k )  +  1 )  =  n )
8786eqcomd 2288 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n )  ->  n  =  ( ( 2  x.  k
)  +  1 ) )
8887a1i 10 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n )  ->  n  =  ( ( 2  x.  k
)  +  1 ) ) )
8985, 88jcad 519 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n )  ->  ( k  e. 
NN0  /\  n  =  ( ( 2  x.  k )  +  1 ) ) ) )
9089reximdv2 2652 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( E. k  e.  ZZ  (
( 2  x.  k
)  +  1 )  =  n  ->  E. k  e.  NN0  n  =  ( ( 2  x.  k
)  +  1 ) ) )
9155, 90sylbid 206 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( -.  2  ||  n  ->  E. k  e.  NN0  n  =  ( (
2  x.  k )  +  1 ) ) )
92 iserodd.f . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN0 )  ->  C  e.  CC )
93 iserodd.h . . . . . . . . . . . . . . 15  |-  ( n  =  ( ( 2  x.  k )  +  1 )  ->  B  =  C )
9493eleq1d 2349 . . . . . . . . . . . . . 14  |-  ( n  =  ( ( 2  x.  k )  +  1 )  ->  ( B  e.  CC  <->  C  e.  CC ) )
9592, 94syl5ibrcom 213 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( n  =  ( ( 2  x.  k )  +  1 )  ->  B  e.  CC ) )
9695rexlimdva 2667 . . . . . . . . . . . 12  |-  ( ph  ->  ( E. k  e. 
NN0  n  =  ( ( 2  x.  k
)  +  1 )  ->  B  e.  CC ) )
9796adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( E. k  e.  NN0  n  =  ( ( 2  x.  k )  +  1 )  ->  B  e.  CC ) )
9891, 97syld 40 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( -.  2  ||  n  ->  B  e.  CC )
)
9998imp 418 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  -.  2  ||  n )  ->  B  e.  CC )
10051, 99ifclda 3592 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  if ( 2  ||  n ,  0 ,  B )  e.  CC )
101 eqid 2283 . . . . . . . . 9  |-  ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B ) )  =  ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B ) )
102101fvmpt2 5608 . . . . . . . 8  |-  ( ( n  e.  NN  /\  if ( 2  ||  n ,  0 ,  B
)  e.  CC )  ->  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B ) ) `  n )  =  if ( 2 
||  n ,  0 ,  B ) )
10349, 100, 102syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  n
)  =  if ( 2  ||  n ,  0 ,  B ) )
10448, 103sylan2 460 . . . . . 6  |-  ( (
ph  /\  n  e.  ( NN  \  ran  (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) ) )  ->  (
( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  n
)  =  if ( 2  ||  n ,  0 ,  B ) )
105 eldif 3162 . . . . . . . 8  |-  ( n  e.  ( NN  \  ran  ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) )  <->  ( n  e.  NN  /\  -.  n  e.  ran  ( m  e. 
NN0  |->  ( ( 2  x.  m )  +  1 ) ) ) )
106 vex 2791 . . . . . . . . . . . 12  |-  n  e. 
_V
107 oveq2 5866 . . . . . . . . . . . . . . 15  |-  ( m  =  k  ->  (
2  x.  m )  =  ( 2  x.  k ) )
108107oveq1d 5873 . . . . . . . . . . . . . 14  |-  ( m  =  k  ->  (
( 2  x.  m
)  +  1 )  =  ( ( 2  x.  k )  +  1 ) )
109108cbvmptv 4111 . . . . . . . . . . . . 13  |-  ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) )  =  ( k  e. 
NN0  |->  ( ( 2  x.  k )  +  1 ) )
110109elrnmpt 4926 . . . . . . . . . . . 12  |-  ( n  e.  _V  ->  (
n  e.  ran  (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) )  <->  E. k  e.  NN0  n  =  ( (
2  x.  k )  +  1 ) ) )
111106, 110ax-mp 8 . . . . . . . . . . 11  |-  ( n  e.  ran  ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) )  <->  E. k  e.  NN0  n  =  ( (
2  x.  k )  +  1 ) )
11291, 111syl6ibr 218 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( -.  2  ||  n  ->  n  e.  ran  ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) ) )
113112con1d 116 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( -.  n  e.  ran  (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) )  ->  2  ||  n
) )
114113impr 602 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  NN  /\  -.  n  e.  ran  ( m  e. 
NN0  |->  ( ( 2  x.  m )  +  1 ) ) ) )  ->  2  ||  n )
115105, 114sylan2b 461 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( NN  \  ran  (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) ) )  ->  2  ||  n )
116 iftrue 3571 . . . . . . 7  |-  ( 2 
||  n  ->  if ( 2  ||  n ,  0 ,  B
)  =  0 )
117115, 116syl 15 . . . . . 6  |-  ( (
ph  /\  n  e.  ( NN  \  ran  (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) ) )  ->  if ( 2  ||  n ,  0 ,  B
)  =  0 )
118104, 117eqtrd 2315 . . . . 5  |-  ( (
ph  /\  n  e.  ( NN  \  ran  (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) ) )  ->  (
( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  n
)  =  0 )
119118ralrimiva 2626 . . . 4  |-  ( ph  ->  A. n  e.  ( NN  \  ran  (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) ) ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B ) ) `  n )  =  0 )
120 nfv 1605 . . . . 5  |-  F/ j ( ( n  e.  NN  |->  if ( 2 
||  n ,  0 ,  B ) ) `
 n )  =  0
121 nfmpt1 4109 . . . . . . 7  |-  F/_ n
( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) )
122 nfcv 2419 . . . . . . 7  |-  F/_ n
j
123121, 122nffv 5532 . . . . . 6  |-  F/_ n
( ( n  e.  NN  |->  if ( 2 
||  n ,  0 ,  B ) ) `
 j )
124123nfeq1 2428 . . . . 5  |-  F/ n
( ( n  e.  NN  |->  if ( 2 
||  n ,  0 ,  B ) ) `
 j )  =  0
125 fveq2 5525 . . . . . 6  |-  ( n  =  j  ->  (
( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  n
)  =  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  j
) )
126125eqeq1d 2291 . . . . 5  |-  ( n  =  j  ->  (
( ( n  e.  NN  |->  if ( 2 
||  n ,  0 ,  B ) ) `
 n )  =  0  <->  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B ) ) `  j )  =  0 ) )
127120, 124, 126cbvral 2760 . . . 4  |-  ( A. n  e.  ( NN  \  ran  ( m  e. 
NN0  |->  ( ( 2  x.  m )  +  1 ) ) ) ( ( n  e.  NN  |->  if ( 2 
||  n ,  0 ,  B ) ) `
 n )  =  0  <->  A. j  e.  ( NN  \  ran  (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) ) ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B ) ) `  j )  =  0 )
128119, 127sylib 188 . . 3  |-  ( ph  ->  A. j  e.  ( NN  \  ran  (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) ) ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B ) ) `  j )  =  0 )
129128r19.21bi 2641 . 2  |-  ( (
ph  /\  j  e.  ( NN  \  ran  (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) ) )  ->  (
( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  j
)  =  0 )
130100, 101fmptd 5684 . . 3  |-  ( ph  ->  ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) : NN --> CC )
131 ffvelrn 5663 . . 3  |-  ( ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) : NN --> CC  /\  j  e.  NN )  ->  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B ) ) `  j )  e.  CC )
132130, 131sylan 457 . 2  |-  ( (
ph  /\  j  e.  NN )  ->  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  j
)  e.  CC )
133 simpr 447 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
134 eqid 2283 . . . . . . . 8  |-  ( k  e.  NN0  |->  C )  =  ( k  e. 
NN0  |->  C )
135134fvmpt2 5608 . . . . . . 7  |-  ( ( k  e.  NN0  /\  C  e.  CC )  ->  ( ( k  e. 
NN0  |->  C ) `  k )  =  C )
136133, 92, 135syl2anc 642 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
k  e.  NN0  |->  C ) `
 k )  =  C )
137 ovex 5883 . . . . . . . . . 10  |-  ( ( 2  x.  k )  +  1 )  e. 
_V
138108, 13, 137fvmpt 5602 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `
 k )  =  ( ( 2  x.  k )  +  1 ) )
139138adantl 452 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `
 k )  =  ( ( 2  x.  k )  +  1 ) )
140139fveq2d 5529 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  (
( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `  k
) )  =  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  (
( 2  x.  k
)  +  1 ) ) )
141 nn0mulcl 10000 . . . . . . . . . 10  |-  ( ( 2  e.  NN0  /\  k  e.  NN0 )  -> 
( 2  x.  k
)  e.  NN0 )
1428, 141sylan 457 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 2  x.  k )  e. 
NN0 )
143 nn0p1nn 10003 . . . . . . . . 9  |-  ( ( 2  x.  k )  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  e.  NN )
144142, 143syl 15 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
2  x.  k )  +  1 )  e.  NN )
145 2z 10054 . . . . . . . . . . . 12  |-  2  e.  ZZ
146 nn0z 10046 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  k  e.  ZZ )
147146adantl 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  ZZ )
148 dvdsmul1 12550 . . . . . . . . . . . 12  |-  ( ( 2  e.  ZZ  /\  k  e.  ZZ )  ->  2  ||  ( 2  x.  k ) )
149145, 147, 148sylancr 644 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  2  ||  ( 2  x.  k
) )
150142nn0zd 10115 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 2  x.  k )  e.  ZZ )
151 2nn 9877 . . . . . . . . . . . . 13  |-  2  e.  NN
152151a1i 10 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  2  e.  NN )
153 1lt2 9886 . . . . . . . . . . . . 13  |-  1  <  2
154153a1i 10 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  1  <  2 )
155 ndvdsp1 12608 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  k
)  e.  ZZ  /\  2  e.  NN  /\  1  <  2 )  ->  (
2  ||  ( 2  x.  k )  ->  -.  2  ||  ( ( 2  x.  k )  +  1 ) ) )
156150, 152, 154, 155syl3anc 1182 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 2 
||  ( 2  x.  k )  ->  -.  2  ||  ( ( 2  x.  k )  +  1 ) ) )
157149, 156mpd 14 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  -.  2  ||  ( ( 2  x.  k )  +  1 ) )
158 iffalse 3572 . . . . . . . . . 10  |-  ( -.  2  ||  ( ( 2  x.  k )  +  1 )  ->  if ( 2  ||  (
( 2  x.  k
)  +  1 ) ,  0 ,  C
)  =  C )
159157, 158syl 15 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  if (
2  ||  ( (
2  x.  k )  +  1 ) ,  0 ,  C )  =  C )
160159, 92eqeltrd 2357 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  if (
2  ||  ( (
2  x.  k )  +  1 ) ,  0 ,  C )  e.  CC )
161 breq2 4027 . . . . . . . . . 10  |-  ( n  =  ( ( 2  x.  k )  +  1 )  ->  (
2  ||  n  <->  2  ||  ( ( 2  x.  k )  +  1 ) ) )
162161, 93ifbieq2d 3585 . . . . . . . . 9  |-  ( n  =  ( ( 2  x.  k )  +  1 )  ->  if ( 2  ||  n ,  0 ,  B
)  =  if ( 2  ||  ( ( 2  x.  k )  +  1 ) ,  0 ,  C ) )
163162, 101fvmptg 5600 . . . . . . . 8  |-  ( ( ( ( 2  x.  k )  +  1 )  e.  NN  /\  if ( 2  ||  (
( 2  x.  k
)  +  1 ) ,  0 ,  C
)  e.  CC )  ->  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B ) ) `  ( ( 2  x.  k )  +  1 ) )  =  if ( 2 
||  ( ( 2  x.  k )  +  1 ) ,  0 ,  C ) )
164144, 160, 163syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  (
( 2  x.  k
)  +  1 ) )  =  if ( 2  ||  ( ( 2  x.  k )  +  1 ) ,  0 ,  C ) )
165140, 164, 1593eqtrd 2319 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  (
( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `  k
) )  =  C )
166136, 165eqtr4d 2318 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
k  e.  NN0  |->  C ) `
 k )  =  ( ( n  e.  NN  |->  if ( 2 
||  n ,  0 ,  B ) ) `
 ( ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `
 k ) ) )
167166ralrimiva 2626 . . . 4  |-  ( ph  ->  A. k  e.  NN0  ( ( k  e. 
NN0  |->  C ) `  k )  =  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  (
( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `  k
) ) )
168 nfv 1605 . . . . 5  |-  F/ i ( ( k  e. 
NN0  |->  C ) `  k )  =  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  (
( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `  k
) )
169 nfmpt1 4109 . . . . . . 7  |-  F/_ k
( k  e.  NN0  |->  C )
170 nfcv 2419 . . . . . . 7  |-  F/_ k
i
171169, 170nffv 5532 . . . . . 6  |-  F/_ k
( ( k  e. 
NN0  |->  C ) `  i )
172171nfeq1 2428 . . . . 5  |-  F/ k ( ( k  e. 
NN0  |->  C ) `  i )  =  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  (
( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `  i
) )
173 fveq2 5525 . . . . . 6  |-  ( k  =  i  ->  (
( k  e.  NN0  |->  C ) `  k
)  =  ( ( k  e.  NN0  |->  C ) `
 i ) )
174 fveq2 5525 . . . . . . 7  |-  ( k  =  i  ->  (
( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `  k
)  =  ( ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `
 i ) )
175174fveq2d 5529 . . . . . 6  |-  ( k  =  i  ->  (
( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  (
( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `  k
) )  =  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  (
( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `  i
) ) )
176173, 175eqeq12d 2297 . . . . 5  |-  ( k  =  i  ->  (
( ( k  e. 
NN0  |->  C ) `  k )  =  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  (
( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `  k
) )  <->  ( (
k  e.  NN0  |->  C ) `
 i )  =  ( ( n  e.  NN  |->  if ( 2 
||  n ,  0 ,  B ) ) `
 ( ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `
 i ) ) ) )
177168, 172, 176cbvral 2760 . . . 4  |-  ( A. k  e.  NN0  ( ( k  e.  NN0  |->  C ) `
 k )  =  ( ( n  e.  NN  |->  if ( 2 
||  n ,  0 ,  B ) ) `
 ( ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `
 k ) )  <->  A. i  e.  NN0  ( ( k  e. 
NN0  |->  C ) `  i )  =  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  (
( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `  i
) ) )
178167, 177sylib 188 . . 3  |-  ( ph  ->  A. i  e.  NN0  ( ( k  e. 
NN0  |->  C ) `  i )  =  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  (
( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `  i
) ) )
179178r19.21bi 2641 . 2  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( (
k  e.  NN0  |->  C ) `
 i )  =  ( ( n  e.  NN  |->  if ( 2 
||  n ,  0 ,  B ) ) `
 ( ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `
 i ) ) )
1801, 2, 4, 6, 14, 47, 129, 132, 179isercoll2 12142 1  |-  ( ph  ->  (  seq  0 (  +  ,  ( k  e.  NN0  |->  C ) )  ~~>  A  <->  seq  1
(  +  ,  ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) )  ~~>  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   _Vcvv 2788    \ cdif 3149   ifcif 3565   class class class wbr 4023    e. cmpt 4077   ran crn 4690   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   NNcn 9746   2c2 9795   NN0cn0 9965   ZZcz 10024    seq cseq 11046    ~~> cli 11958    || cdivides 12531
This theorem is referenced by:  atantayl3  20235  leibpilem2  20237
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-seq 11047  df-exp 11105  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-dvds 12532
  Copyright terms: Public domain W3C validator