MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iserodd Unicode version

Theorem iserodd 13138
Description: Collect the odd terms in a sequence. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
iserodd.f  |-  ( (
ph  /\  k  e.  NN0 )  ->  C  e.  CC )
iserodd.h  |-  ( n  =  ( ( 2  x.  k )  +  1 )  ->  B  =  C )
Assertion
Ref Expression
iserodd  |-  ( ph  ->  (  seq  0 (  +  ,  ( k  e.  NN0  |->  C ) )  ~~>  A  <->  seq  1
(  +  ,  ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) )  ~~>  A ) )
Distinct variable groups:    B, k    C, n    k, n, ph
Allowed substitution hints:    A( k, n)    B( n)    C( k)

Proof of Theorem iserodd
Dummy variables  i 
j  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 10454 . 2  |-  NN0  =  ( ZZ>= `  0 )
2 nnuz 10455 . 2  |-  NN  =  ( ZZ>= `  1 )
3 0z 10227 . . 3  |-  0  e.  ZZ
43a1i 11 . 2  |-  ( ph  ->  0  e.  ZZ )
5 1z 10245 . . 3  |-  1  e.  ZZ
65a1i 11 . 2  |-  ( ph  ->  1  e.  ZZ )
7 2nn0 10172 . . . . . 6  |-  2  e.  NN0
87a1i 11 . . . . 5  |-  ( ph  ->  2  e.  NN0 )
9 nn0mulcl 10190 . . . . 5  |-  ( ( 2  e.  NN0  /\  m  e.  NN0 )  -> 
( 2  x.  m
)  e.  NN0 )
108, 9sylan 458 . . . 4  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( 2  x.  m )  e. 
NN0 )
11 nn0p1nn 10193 . . . 4  |-  ( ( 2  x.  m )  e.  NN0  ->  ( ( 2  x.  m )  +  1 )  e.  NN )
1210, 11syl 16 . . 3  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
2  x.  m )  +  1 )  e.  NN )
13 eqid 2389 . . 3  |-  ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) )  =  ( m  e. 
NN0  |->  ( ( 2  x.  m )  +  1 ) )
1412, 13fmptd 5834 . 2  |-  ( ph  ->  ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) : NN0 --> NN )
15 nn0mulcl 10190 . . . . . 6  |-  ( ( 2  e.  NN0  /\  i  e.  NN0 )  -> 
( 2  x.  i
)  e.  NN0 )
168, 15sylan 458 . . . . 5  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( 2  x.  i )  e. 
NN0 )
1716nn0red 10209 . . . 4  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( 2  x.  i )  e.  RR )
18 peano2nn0 10194 . . . . . 6  |-  ( i  e.  NN0  ->  ( i  +  1 )  e. 
NN0 )
19 nn0mulcl 10190 . . . . . 6  |-  ( ( 2  e.  NN0  /\  ( i  +  1 )  e.  NN0 )  ->  ( 2  x.  (
i  +  1 ) )  e.  NN0 )
208, 18, 19syl2an 464 . . . . 5  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( 2  x.  ( i  +  1 ) )  e. 
NN0 )
2120nn0red 10209 . . . 4  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( 2  x.  ( i  +  1 ) )  e.  RR )
22 1re 9025 . . . . 5  |-  1  e.  RR
2322a1i 11 . . . 4  |-  ( (
ph  /\  i  e.  NN0 )  ->  1  e.  RR )
24 nn0re 10164 . . . . . . 7  |-  ( i  e.  NN0  ->  i  e.  RR )
2524adantl 453 . . . . . 6  |-  ( (
ph  /\  i  e.  NN0 )  ->  i  e.  RR )
2625ltp1d 9875 . . . . 5  |-  ( (
ph  /\  i  e.  NN0 )  ->  i  <  ( i  +  1 ) )
2718adantl 453 . . . . . . 7  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( i  +  1 )  e. 
NN0 )
2827nn0red 10209 . . . . . 6  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( i  +  1 )  e.  RR )
29 2re 10003 . . . . . . 7  |-  2  e.  RR
3029a1i 11 . . . . . 6  |-  ( (
ph  /\  i  e.  NN0 )  ->  2  e.  RR )
31 2pos 10016 . . . . . . 7  |-  0  <  2
3231a1i 11 . . . . . 6  |-  ( (
ph  /\  i  e.  NN0 )  ->  0  <  2 )
33 ltmul2 9795 . . . . . 6  |-  ( ( i  e.  RR  /\  ( i  +  1 )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( i  <  ( i  +  1 )  <->  ( 2  x.  i )  <  (
2  x.  ( i  +  1 ) ) ) )
3425, 28, 30, 32, 33syl112anc 1188 . . . . 5  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( i  <  ( i  +  1 )  <->  ( 2  x.  i )  <  (
2  x.  ( i  +  1 ) ) ) )
3526, 34mpbid 202 . . . 4  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( 2  x.  i )  < 
( 2  x.  (
i  +  1 ) ) )
3617, 21, 23, 35ltadd1dd 9571 . . 3  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( (
2  x.  i )  +  1 )  < 
( ( 2  x.  ( i  +  1 ) )  +  1 ) )
37 oveq2 6030 . . . . . 6  |-  ( m  =  i  ->  (
2  x.  m )  =  ( 2  x.  i ) )
3837oveq1d 6037 . . . . 5  |-  ( m  =  i  ->  (
( 2  x.  m
)  +  1 )  =  ( ( 2  x.  i )  +  1 ) )
39 ovex 6047 . . . . 5  |-  ( ( 2  x.  i )  +  1 )  e. 
_V
4038, 13, 39fvmpt 5747 . . . 4  |-  ( i  e.  NN0  ->  ( ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `
 i )  =  ( ( 2  x.  i )  +  1 ) )
4140adantl 453 . . 3  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `
 i )  =  ( ( 2  x.  i )  +  1 ) )
42 oveq2 6030 . . . . . 6  |-  ( m  =  ( i  +  1 )  ->  (
2  x.  m )  =  ( 2  x.  ( i  +  1 ) ) )
4342oveq1d 6037 . . . . 5  |-  ( m  =  ( i  +  1 )  ->  (
( 2  x.  m
)  +  1 )  =  ( ( 2  x.  ( i  +  1 ) )  +  1 ) )
44 ovex 6047 . . . . 5  |-  ( ( 2  x.  ( i  +  1 ) )  +  1 )  e. 
_V
4543, 13, 44fvmpt 5747 . . . 4  |-  ( ( i  +  1 )  e.  NN0  ->  ( ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `
 ( i  +  1 ) )  =  ( ( 2  x.  ( i  +  1 ) )  +  1 ) )
4627, 45syl 16 . . 3  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `
 ( i  +  1 ) )  =  ( ( 2  x.  ( i  +  1 ) )  +  1 ) )
4736, 41, 463brtr4d 4185 . 2  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `
 i )  < 
( ( m  e. 
NN0  |->  ( ( 2  x.  m )  +  1 ) ) `  ( i  +  1 ) ) )
48 eldifi 3414 . . . . . . 7  |-  ( n  e.  ( NN  \  ran  ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) )  ->  n  e.  NN )
49 simpr 448 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  NN )
50 0cn 9019 . . . . . . . . . 10  |-  0  e.  CC
5150a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  2  ||  n )  ->  0  e.  CC )
52 nnz 10237 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  n  e.  ZZ )
5352adantl 453 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  ZZ )
54 odd2np1 12837 . . . . . . . . . . . . 13  |-  ( n  e.  ZZ  ->  ( -.  2  ||  n  <->  E. k  e.  ZZ  ( ( 2  x.  k )  +  1 )  =  n ) )
5553, 54syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( -.  2  ||  n  <->  E. k  e.  ZZ  ( ( 2  x.  k )  +  1 )  =  n ) )
56 simprl 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  k  e.  ZZ )
57 nnm1nn0 10195 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  e.  NN  ->  (
n  -  1 )  e.  NN0 )
5857ad2antlr 708 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  ( n  -  1 )  e. 
NN0 )
5958nn0red 10209 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  ( n  -  1 )  e.  RR )
6058nn0ge0d 10211 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  0  <_  ( n  -  1 ) )
6129a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  2  e.  RR )
6231a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  0  <  2 )
63 divge0 9813 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( n  - 
1 )  e.  RR  /\  0  <_  ( n  -  1 ) )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <_  ( (
n  -  1 )  /  2 ) )
6459, 60, 61, 62, 63syl22anc 1185 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  0  <_  ( ( n  -  1 )  /  2 ) )
65 simprr 734 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  ( (
2  x.  k )  +  1 )  =  n )
6665oveq1d 6037 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  ( (
( 2  x.  k
)  +  1 )  -  1 )  =  ( n  -  1 ) )
67 2cn 10004 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  e.  CC
68 zcn 10221 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( k  e.  ZZ  ->  k  e.  CC )
6968ad2antrl 709 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  k  e.  CC )
70 mulcl 9009 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2  e.  CC  /\  k  e.  CC )  ->  ( 2  x.  k
)  e.  CC )
7167, 69, 70sylancr 645 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  ( 2  x.  k )  e.  CC )
72 ax-1cn 8983 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  CC
73 pncan 9245 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 2  x.  k
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2  x.  k )  +  1 )  -  1 )  =  ( 2  x.  k ) )
7471, 72, 73sylancl 644 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  ( (
( 2  x.  k
)  +  1 )  -  1 )  =  ( 2  x.  k
) )
7566, 74eqtr3d 2423 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  ( n  -  1 )  =  ( 2  x.  k
) )
7675oveq1d 6037 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  ( (
n  -  1 )  /  2 )  =  ( ( 2  x.  k )  /  2
) )
7767a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  2  e.  CC )
78 2ne0 10017 . . . . . . . . . . . . . . . . . . . 20  |-  2  =/=  0
7978a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  2  =/=  0 )
8069, 77, 79divcan3d 9729 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  ( (
2  x.  k )  /  2 )  =  k )
8176, 80eqtrd 2421 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  ( (
n  -  1 )  /  2 )  =  k )
8264, 81breqtrd 4179 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  0  <_  k )
83 elnn0z 10228 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  <->  ( k  e.  ZZ  /\  0  <_ 
k ) )
8456, 82, 83sylanbrc 646 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  (
k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n ) )  ->  k  e.  NN0 )
8584ex 424 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n )  ->  k  e.  NN0 ) )
86 simpr 448 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n )  ->  ( ( 2  x.  k )  +  1 )  =  n )
8786eqcomd 2394 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n )  ->  n  =  ( ( 2  x.  k
)  +  1 ) )
8887a1i 11 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n )  ->  n  =  ( ( 2  x.  k
)  +  1 ) ) )
8985, 88jcad 520 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( k  e.  ZZ  /\  ( ( 2  x.  k )  +  1 )  =  n )  ->  ( k  e. 
NN0  /\  n  =  ( ( 2  x.  k )  +  1 ) ) ) )
9089reximdv2 2760 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( E. k  e.  ZZ  (
( 2  x.  k
)  +  1 )  =  n  ->  E. k  e.  NN0  n  =  ( ( 2  x.  k
)  +  1 ) ) )
9155, 90sylbid 207 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( -.  2  ||  n  ->  E. k  e.  NN0  n  =  ( (
2  x.  k )  +  1 ) ) )
92 iserodd.f . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN0 )  ->  C  e.  CC )
93 iserodd.h . . . . . . . . . . . . . . 15  |-  ( n  =  ( ( 2  x.  k )  +  1 )  ->  B  =  C )
9493eleq1d 2455 . . . . . . . . . . . . . 14  |-  ( n  =  ( ( 2  x.  k )  +  1 )  ->  ( B  e.  CC  <->  C  e.  CC ) )
9592, 94syl5ibrcom 214 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( n  =  ( ( 2  x.  k )  +  1 )  ->  B  e.  CC ) )
9695rexlimdva 2775 . . . . . . . . . . . 12  |-  ( ph  ->  ( E. k  e. 
NN0  n  =  ( ( 2  x.  k
)  +  1 )  ->  B  e.  CC ) )
9796adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  ( E. k  e.  NN0  n  =  ( ( 2  x.  k )  +  1 )  ->  B  e.  CC ) )
9891, 97syld 42 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( -.  2  ||  n  ->  B  e.  CC )
)
9998imp 419 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  -.  2  ||  n )  ->  B  e.  CC )
10051, 99ifclda 3711 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  if ( 2  ||  n ,  0 ,  B )  e.  CC )
101 eqid 2389 . . . . . . . . 9  |-  ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B ) )  =  ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B ) )
102101fvmpt2 5753 . . . . . . . 8  |-  ( ( n  e.  NN  /\  if ( 2  ||  n ,  0 ,  B
)  e.  CC )  ->  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B ) ) `  n )  =  if ( 2 
||  n ,  0 ,  B ) )
10349, 100, 102syl2anc 643 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  n
)  =  if ( 2  ||  n ,  0 ,  B ) )
10448, 103sylan2 461 . . . . . 6  |-  ( (
ph  /\  n  e.  ( NN  \  ran  (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) ) )  ->  (
( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  n
)  =  if ( 2  ||  n ,  0 ,  B ) )
105 eldif 3275 . . . . . . . 8  |-  ( n  e.  ( NN  \  ran  ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) )  <->  ( n  e.  NN  /\  -.  n  e.  ran  ( m  e. 
NN0  |->  ( ( 2  x.  m )  +  1 ) ) ) )
106 vex 2904 . . . . . . . . . . . 12  |-  n  e. 
_V
107 oveq2 6030 . . . . . . . . . . . . . . 15  |-  ( m  =  k  ->  (
2  x.  m )  =  ( 2  x.  k ) )
108107oveq1d 6037 . . . . . . . . . . . . . 14  |-  ( m  =  k  ->  (
( 2  x.  m
)  +  1 )  =  ( ( 2  x.  k )  +  1 ) )
109108cbvmptv 4243 . . . . . . . . . . . . 13  |-  ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) )  =  ( k  e. 
NN0  |->  ( ( 2  x.  k )  +  1 ) )
110109elrnmpt 5059 . . . . . . . . . . . 12  |-  ( n  e.  _V  ->  (
n  e.  ran  (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) )  <->  E. k  e.  NN0  n  =  ( (
2  x.  k )  +  1 ) ) )
111106, 110ax-mp 8 . . . . . . . . . . 11  |-  ( n  e.  ran  ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) )  <->  E. k  e.  NN0  n  =  ( (
2  x.  k )  +  1 ) )
11291, 111syl6ibr 219 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( -.  2  ||  n  ->  n  e.  ran  ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) ) )
113112con1d 118 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( -.  n  e.  ran  (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) )  ->  2  ||  n
) )
114113impr 603 . . . . . . . 8  |-  ( (
ph  /\  ( n  e.  NN  /\  -.  n  e.  ran  ( m  e. 
NN0  |->  ( ( 2  x.  m )  +  1 ) ) ) )  ->  2  ||  n )
115105, 114sylan2b 462 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( NN  \  ran  (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) ) )  ->  2  ||  n )
116 iftrue 3690 . . . . . . 7  |-  ( 2 
||  n  ->  if ( 2  ||  n ,  0 ,  B
)  =  0 )
117115, 116syl 16 . . . . . 6  |-  ( (
ph  /\  n  e.  ( NN  \  ran  (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) ) )  ->  if ( 2  ||  n ,  0 ,  B
)  =  0 )
118104, 117eqtrd 2421 . . . . 5  |-  ( (
ph  /\  n  e.  ( NN  \  ran  (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) ) )  ->  (
( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  n
)  =  0 )
119118ralrimiva 2734 . . . 4  |-  ( ph  ->  A. n  e.  ( NN  \  ran  (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) ) ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B ) ) `  n )  =  0 )
120 nfv 1626 . . . . 5  |-  F/ j ( ( n  e.  NN  |->  if ( 2 
||  n ,  0 ,  B ) ) `
 n )  =  0
121 nffvmpt1 5678 . . . . . 6  |-  F/_ n
( ( n  e.  NN  |->  if ( 2 
||  n ,  0 ,  B ) ) `
 j )
122121nfeq1 2534 . . . . 5  |-  F/ n
( ( n  e.  NN  |->  if ( 2 
||  n ,  0 ,  B ) ) `
 j )  =  0
123 fveq2 5670 . . . . . 6  |-  ( n  =  j  ->  (
( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  n
)  =  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  j
) )
124123eqeq1d 2397 . . . . 5  |-  ( n  =  j  ->  (
( ( n  e.  NN  |->  if ( 2 
||  n ,  0 ,  B ) ) `
 n )  =  0  <->  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B ) ) `  j )  =  0 ) )
125120, 122, 124cbvral 2873 . . . 4  |-  ( A. n  e.  ( NN  \  ran  ( m  e. 
NN0  |->  ( ( 2  x.  m )  +  1 ) ) ) ( ( n  e.  NN  |->  if ( 2 
||  n ,  0 ,  B ) ) `
 n )  =  0  <->  A. j  e.  ( NN  \  ran  (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) ) ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B ) ) `  j )  =  0 )
126119, 125sylib 189 . . 3  |-  ( ph  ->  A. j  e.  ( NN  \  ran  (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) ) ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B ) ) `  j )  =  0 )
127126r19.21bi 2749 . 2  |-  ( (
ph  /\  j  e.  ( NN  \  ran  (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) ) )  ->  (
( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  j
)  =  0 )
128100, 101fmptd 5834 . . 3  |-  ( ph  ->  ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) : NN --> CC )
129128ffvelrnda 5811 . 2  |-  ( (
ph  /\  j  e.  NN )  ->  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  j
)  e.  CC )
130 simpr 448 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  NN0 )
131 eqid 2389 . . . . . . . 8  |-  ( k  e.  NN0  |->  C )  =  ( k  e. 
NN0  |->  C )
132131fvmpt2 5753 . . . . . . 7  |-  ( ( k  e.  NN0  /\  C  e.  CC )  ->  ( ( k  e. 
NN0  |->  C ) `  k )  =  C )
133130, 92, 132syl2anc 643 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
k  e.  NN0  |->  C ) `
 k )  =  C )
134 ovex 6047 . . . . . . . . . 10  |-  ( ( 2  x.  k )  +  1 )  e. 
_V
135108, 13, 134fvmpt 5747 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `
 k )  =  ( ( 2  x.  k )  +  1 ) )
136135adantl 453 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `
 k )  =  ( ( 2  x.  k )  +  1 ) )
137136fveq2d 5674 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  (
( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `  k
) )  =  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  (
( 2  x.  k
)  +  1 ) ) )
138 nn0mulcl 10190 . . . . . . . . . 10  |-  ( ( 2  e.  NN0  /\  k  e.  NN0 )  -> 
( 2  x.  k
)  e.  NN0 )
1398, 138sylan 458 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 2  x.  k )  e. 
NN0 )
140 nn0p1nn 10193 . . . . . . . . 9  |-  ( ( 2  x.  k )  e.  NN0  ->  ( ( 2  x.  k )  +  1 )  e.  NN )
141139, 140syl 16 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
2  x.  k )  +  1 )  e.  NN )
142 2z 10246 . . . . . . . . . . . 12  |-  2  e.  ZZ
143 nn0z 10238 . . . . . . . . . . . . 13  |-  ( k  e.  NN0  ->  k  e.  ZZ )
144143adantl 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  ZZ )
145 dvdsmul1 12800 . . . . . . . . . . . 12  |-  ( ( 2  e.  ZZ  /\  k  e.  ZZ )  ->  2  ||  ( 2  x.  k ) )
146142, 144, 145sylancr 645 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  2  ||  ( 2  x.  k
) )
147139nn0zd 10307 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 2  x.  k )  e.  ZZ )
148 2nn 10067 . . . . . . . . . . . . 13  |-  2  e.  NN
149148a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  2  e.  NN )
150 1lt2 10076 . . . . . . . . . . . . 13  |-  1  <  2
151150a1i 11 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  1  <  2 )
152 ndvdsp1 12858 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  k
)  e.  ZZ  /\  2  e.  NN  /\  1  <  2 )  ->  (
2  ||  ( 2  x.  k )  ->  -.  2  ||  ( ( 2  x.  k )  +  1 ) ) )
153147, 149, 151, 152syl3anc 1184 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 2 
||  ( 2  x.  k )  ->  -.  2  ||  ( ( 2  x.  k )  +  1 ) ) )
154146, 153mpd 15 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN0 )  ->  -.  2  ||  ( ( 2  x.  k )  +  1 ) )
155 iffalse 3691 . . . . . . . . . 10  |-  ( -.  2  ||  ( ( 2  x.  k )  +  1 )  ->  if ( 2  ||  (
( 2  x.  k
)  +  1 ) ,  0 ,  C
)  =  C )
156154, 155syl 16 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  if (
2  ||  ( (
2  x.  k )  +  1 ) ,  0 ,  C )  =  C )
157156, 92eqeltrd 2463 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  if (
2  ||  ( (
2  x.  k )  +  1 ) ,  0 ,  C )  e.  CC )
158 breq2 4159 . . . . . . . . . 10  |-  ( n  =  ( ( 2  x.  k )  +  1 )  ->  (
2  ||  n  <->  2  ||  ( ( 2  x.  k )  +  1 ) ) )
159158, 93ifbieq2d 3704 . . . . . . . . 9  |-  ( n  =  ( ( 2  x.  k )  +  1 )  ->  if ( 2  ||  n ,  0 ,  B
)  =  if ( 2  ||  ( ( 2  x.  k )  +  1 ) ,  0 ,  C ) )
160159, 101fvmptg 5745 . . . . . . . 8  |-  ( ( ( ( 2  x.  k )  +  1 )  e.  NN  /\  if ( 2  ||  (
( 2  x.  k
)  +  1 ) ,  0 ,  C
)  e.  CC )  ->  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B ) ) `  ( ( 2  x.  k )  +  1 ) )  =  if ( 2 
||  ( ( 2  x.  k )  +  1 ) ,  0 ,  C ) )
161141, 157, 160syl2anc 643 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  (
( 2  x.  k
)  +  1 ) )  =  if ( 2  ||  ( ( 2  x.  k )  +  1 ) ,  0 ,  C ) )
162137, 161, 1563eqtrd 2425 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  (
( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `  k
) )  =  C )
163133, 162eqtr4d 2424 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
k  e.  NN0  |->  C ) `
 k )  =  ( ( n  e.  NN  |->  if ( 2 
||  n ,  0 ,  B ) ) `
 ( ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `
 k ) ) )
164163ralrimiva 2734 . . . 4  |-  ( ph  ->  A. k  e.  NN0  ( ( k  e. 
NN0  |->  C ) `  k )  =  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  (
( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `  k
) ) )
165 nfv 1626 . . . . 5  |-  F/ i ( ( k  e. 
NN0  |->  C ) `  k )  =  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  (
( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `  k
) )
166 nffvmpt1 5678 . . . . . 6  |-  F/_ k
( ( k  e. 
NN0  |->  C ) `  i )
167166nfeq1 2534 . . . . 5  |-  F/ k ( ( k  e. 
NN0  |->  C ) `  i )  =  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  (
( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `  i
) )
168 fveq2 5670 . . . . . 6  |-  ( k  =  i  ->  (
( k  e.  NN0  |->  C ) `  k
)  =  ( ( k  e.  NN0  |->  C ) `
 i ) )
169 fveq2 5670 . . . . . . 7  |-  ( k  =  i  ->  (
( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `  k
)  =  ( ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `
 i ) )
170169fveq2d 5674 . . . . . 6  |-  ( k  =  i  ->  (
( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  (
( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `  k
) )  =  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  (
( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `  i
) ) )
171168, 170eqeq12d 2403 . . . . 5  |-  ( k  =  i  ->  (
( ( k  e. 
NN0  |->  C ) `  k )  =  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  (
( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `  k
) )  <->  ( (
k  e.  NN0  |->  C ) `
 i )  =  ( ( n  e.  NN  |->  if ( 2 
||  n ,  0 ,  B ) ) `
 ( ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `
 i ) ) ) )
172165, 167, 171cbvral 2873 . . . 4  |-  ( A. k  e.  NN0  ( ( k  e.  NN0  |->  C ) `
 k )  =  ( ( n  e.  NN  |->  if ( 2 
||  n ,  0 ,  B ) ) `
 ( ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `
 k ) )  <->  A. i  e.  NN0  ( ( k  e. 
NN0  |->  C ) `  i )  =  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  (
( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `  i
) ) )
173164, 172sylib 189 . . 3  |-  ( ph  ->  A. i  e.  NN0  ( ( k  e. 
NN0  |->  C ) `  i )  =  ( ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) `  (
( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `  i
) ) )
174173r19.21bi 2749 . 2  |-  ( (
ph  /\  i  e.  NN0 )  ->  ( (
k  e.  NN0  |->  C ) `
 i )  =  ( ( n  e.  NN  |->  if ( 2 
||  n ,  0 ,  B ) ) `
 ( ( m  e.  NN0  |->  ( ( 2  x.  m )  +  1 ) ) `
 i ) ) )
1751, 2, 4, 6, 14, 47, 127, 129, 174isercoll2 12391 1  |-  ( ph  ->  (  seq  0 (  +  ,  ( k  e.  NN0  |->  C ) )  ~~>  A  <->  seq  1
(  +  ,  ( n  e.  NN  |->  if ( 2  ||  n ,  0 ,  B
) ) )  ~~>  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2552   A.wral 2651   E.wrex 2652   _Vcvv 2901    \ cdif 3262   ifcif 3684   class class class wbr 4155    e. cmpt 4209   ran crn 4821   ` cfv 5396  (class class class)co 6022   CCcc 8923   RRcr 8924   0cc0 8925   1c1 8926    + caddc 8928    x. cmul 8930    < clt 9055    <_ cle 9056    - cmin 9225    / cdiv 9611   NNcn 9934   2c2 9983   NN0cn0 10155   ZZcz 10216    seq cseq 11252    ~~> cli 12207    || cdivides 12781
This theorem is referenced by:  atantayl3  20648  leibpilem2  20650
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-inf2 7531  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002  ax-pre-sup 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-isom 5405  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-oadd 6666  df-er 6843  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-sup 7383  df-card 7761  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-div 9612  df-nn 9935  df-2 9992  df-3 9993  df-n0 10156  df-z 10217  df-uz 10423  df-rp 10547  df-fz 10978  df-seq 11253  df-exp 11312  df-hash 11548  df-shft 11811  df-cj 11833  df-re 11834  df-im 11835  df-sqr 11969  df-abs 11970  df-clim 12211  df-dvds 12782
  Copyright terms: Public domain W3C validator