MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem10 Unicode version

Theorem isf32lem10 8198
Description: Lemma for isfin3-2 . Write in terms of weak dominance. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypotheses
Ref Expression
isf32lem.a  |-  ( ph  ->  F : om --> ~P G
)
isf32lem.b  |-  ( ph  ->  A. x  e.  om  ( F `  suc  x
)  C_  ( F `  x ) )
isf32lem.c  |-  ( ph  ->  -.  |^| ran  F  e. 
ran  F )
isf32lem.d  |-  S  =  { y  e.  om  |  ( F `  suc  y )  C.  ( F `  y ) }
isf32lem.e  |-  J  =  ( u  e.  om  |->  ( iota_ v  e.  S
( v  i^i  S
)  ~~  u )
)
isf32lem.f  |-  K  =  ( ( w  e.  S  |->  ( ( F `
 w )  \ 
( F `  suc  w ) ) )  o.  J )
isf32lem.g  |-  L  =  ( t  e.  G  |->  ( iota s ( s  e.  om  /\  t  e.  ( K `  s ) ) ) )
Assertion
Ref Expression
isf32lem10  |-  ( ph  ->  ( G  e.  V  ->  om  ~<_*  G ) )
Distinct variable groups:    x, w    t, G    x, L    t,
s, u, v, w, x, y, ph    w, F, x, y    S, s, t, u, v, w, x, y    J, s, t, w, x, y    K, s, t, x, y
Allowed substitution hints:    F( v, u, t, s)    G( x, y, w, v, u, s)    J( v, u)    K( w, v, u)    L( y, w, v, u, t, s)    V( x, y, w, v, u, t, s)

Proof of Theorem isf32lem10
StepHypRef Expression
1 isf32lem.a . . 3  |-  ( ph  ->  F : om --> ~P G
)
2 isf32lem.b . . 3  |-  ( ph  ->  A. x  e.  om  ( F `  suc  x
)  C_  ( F `  x ) )
3 isf32lem.c . . 3  |-  ( ph  ->  -.  |^| ran  F  e. 
ran  F )
4 isf32lem.d . . 3  |-  S  =  { y  e.  om  |  ( F `  suc  y )  C.  ( F `  y ) }
5 isf32lem.e . . 3  |-  J  =  ( u  e.  om  |->  ( iota_ v  e.  S
( v  i^i  S
)  ~~  u )
)
6 isf32lem.f . . 3  |-  K  =  ( ( w  e.  S  |->  ( ( F `
 w )  \ 
( F `  suc  w ) ) )  o.  J )
7 isf32lem.g . . 3  |-  L  =  ( t  e.  G  |->  ( iota s ( s  e.  om  /\  t  e.  ( K `  s ) ) ) )
81, 2, 3, 4, 5, 6, 7isf32lem9 8197 . 2  |-  ( ph  ->  L : G -onto-> om )
9 fof 5612 . . . . 5  |-  ( L : G -onto-> om  ->  L : G --> om )
108, 9syl 16 . . . 4  |-  ( ph  ->  L : G --> om )
11 fex 5928 . . . 4  |-  ( ( L : G --> om  /\  G  e.  V )  ->  L  e.  _V )
1210, 11sylan 458 . . 3  |-  ( (
ph  /\  G  e.  V )  ->  L  e.  _V )
1312ex 424 . 2  |-  ( ph  ->  ( G  e.  V  ->  L  e.  _V )
)
14 fowdom 7495 . . 3  |-  ( ( L  e.  _V  /\  L : G -onto-> om )  ->  om  ~<_*  G )
1514expcom 425 . 2  |-  ( L : G -onto-> om  ->  ( L  e.  _V  ->  om  ~<_*  G ) )
168, 13, 15sylsyld 54 1  |-  ( ph  ->  ( G  e.  V  ->  om  ~<_*  G ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   {crab 2670   _Vcvv 2916    \ cdif 3277    i^i cin 3279    C_ wss 3280    C. wpss 3281   ~Pcpw 3759   |^|cint 4010   class class class wbr 4172    e. cmpt 4226   suc csuc 4543   omcom 4804   ran crn 4838    o. ccom 4841   iotacio 5375   -->wf 5409   -onto->wfo 5411   ` cfv 5413   iota_crio 6501    ~~ cen 7065    ~<_* cwdom 7481
This theorem is referenced by:  isf32lem11  8199
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6508  df-recs 6592  df-1o 6683  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-wdom 7483  df-card 7782
  Copyright terms: Public domain W3C validator