MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem11 Unicode version

Theorem isf32lem11 7989
Description: Lemma for isfin3-2 7993. Remove hypotheses from isf32lem10 7988. (Contributed by Stefan O'Rear, 17-May-2015.)
Assertion
Ref Expression
isf32lem11  |-  ( ( G  e.  V  /\  ( F : om --> ~P G  /\  A. b  e.  om  ( F `  suc  b
)  C_  ( F `  b )  /\  -.  |^|
ran  F  e.  ran  F ) )  ->  om  ~<_*  G )
Distinct variable groups:    F, b    G, b
Allowed substitution hint:    V( b)

Proof of Theorem isf32lem11
Dummy variables  c 
d  e  f  g  h  k  l are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 955 . . 3  |-  ( ( F : om --> ~P G  /\  A. b  e.  om  ( F `  suc  b
)  C_  ( F `  b )  /\  -.  |^|
ran  F  e.  ran  F )  ->  F : om
--> ~P G )
2 suceq 4457 . . . . . . . 8  |-  ( b  =  c  ->  suc  b  =  suc  c )
32fveq2d 5529 . . . . . . 7  |-  ( b  =  c  ->  ( F `  suc  b )  =  ( F `  suc  c ) )
4 fveq2 5525 . . . . . . 7  |-  ( b  =  c  ->  ( F `  b )  =  ( F `  c ) )
53, 4sseq12d 3207 . . . . . 6  |-  ( b  =  c  ->  (
( F `  suc  b )  C_  ( F `  b )  <->  ( F `  suc  c
)  C_  ( F `  c ) ) )
65cbvralv 2764 . . . . 5  |-  ( A. b  e.  om  ( F `  suc  b ) 
C_  ( F `  b )  <->  A. c  e.  om  ( F `  suc  c )  C_  ( F `  c )
)
76biimpi 186 . . . 4  |-  ( A. b  e.  om  ( F `  suc  b ) 
C_  ( F `  b )  ->  A. c  e.  om  ( F `  suc  c )  C_  ( F `  c )
)
873ad2ant2 977 . . 3  |-  ( ( F : om --> ~P G  /\  A. b  e.  om  ( F `  suc  b
)  C_  ( F `  b )  /\  -.  |^|
ran  F  e.  ran  F )  ->  A. c  e.  om  ( F `  suc  c )  C_  ( F `  c )
)
9 simp3 957 . . 3  |-  ( ( F : om --> ~P G  /\  A. b  e.  om  ( F `  suc  b
)  C_  ( F `  b )  /\  -.  |^|
ran  F  e.  ran  F )  ->  -.  |^| ran  F  e.  ran  F )
10 suceq 4457 . . . . . 6  |-  ( e  =  d  ->  suc  e  =  suc  d )
1110fveq2d 5529 . . . . 5  |-  ( e  =  d  ->  ( F `  suc  e )  =  ( F `  suc  d ) )
12 fveq2 5525 . . . . 5  |-  ( e  =  d  ->  ( F `  e )  =  ( F `  d ) )
1311, 12psseq12d 3270 . . . 4  |-  ( e  =  d  ->  (
( F `  suc  e )  C.  ( F `  e )  <->  ( F `  suc  d
)  C.  ( F `  d ) ) )
1413cbvrabv 2787 . . 3  |-  { e  e.  om  |  ( F `  suc  e
)  C.  ( F `  e ) }  =  { d  e.  om  |  ( F `  suc  d )  C.  ( F `  d ) }
15 eqid 2283 . . 3  |-  ( f  e.  om  |->  ( iota_ g  e.  { e  e. 
om  |  ( F `
 suc  e )  C.  ( F `  e
) }  ( g  i^i  { e  e. 
om  |  ( F `
 suc  e )  C.  ( F `  e
) } )  ~~  f ) )  =  ( f  e.  om  |->  ( iota_ g  e.  {
e  e.  om  | 
( F `  suc  e )  C.  ( F `  e ) }  ( g  i^i 
{ e  e.  om  |  ( F `  suc  e )  C.  ( F `  e ) } )  ~~  f
) )
16 eqid 2283 . . 3  |-  ( ( h  e.  { e  e.  om  |  ( F `  suc  e
)  C.  ( F `  e ) }  |->  ( ( F `  h
)  \  ( F `  suc  h ) ) )  o.  ( f  e.  om  |->  ( iota_ g  e.  { e  e. 
om  |  ( F `
 suc  e )  C.  ( F `  e
) }  ( g  i^i  { e  e. 
om  |  ( F `
 suc  e )  C.  ( F `  e
) } )  ~~  f ) ) )  =  ( ( h  e.  { e  e. 
om  |  ( F `
 suc  e )  C.  ( F `  e
) }  |->  ( ( F `  h ) 
\  ( F `  suc  h ) ) )  o.  ( f  e. 
om  |->  ( iota_ g  e. 
{ e  e.  om  |  ( F `  suc  e )  C.  ( F `  e ) }  ( g  i^i 
{ e  e.  om  |  ( F `  suc  e )  C.  ( F `  e ) } )  ~~  f
) ) )
17 eqid 2283 . . 3  |-  ( k  e.  G  |->  ( iota l ( l  e. 
om  /\  k  e.  ( ( ( h  e.  { e  e. 
om  |  ( F `
 suc  e )  C.  ( F `  e
) }  |->  ( ( F `  h ) 
\  ( F `  suc  h ) ) )  o.  ( f  e. 
om  |->  ( iota_ g  e. 
{ e  e.  om  |  ( F `  suc  e )  C.  ( F `  e ) }  ( g  i^i 
{ e  e.  om  |  ( F `  suc  e )  C.  ( F `  e ) } )  ~~  f
) ) ) `  l ) ) ) )  =  ( k  e.  G  |->  ( iota l ( l  e. 
om  /\  k  e.  ( ( ( h  e.  { e  e. 
om  |  ( F `
 suc  e )  C.  ( F `  e
) }  |->  ( ( F `  h ) 
\  ( F `  suc  h ) ) )  o.  ( f  e. 
om  |->  ( iota_ g  e. 
{ e  e.  om  |  ( F `  suc  e )  C.  ( F `  e ) }  ( g  i^i 
{ e  e.  om  |  ( F `  suc  e )  C.  ( F `  e ) } )  ~~  f
) ) ) `  l ) ) ) )
181, 8, 9, 14, 15, 16, 17isf32lem10 7988 . 2  |-  ( ( F : om --> ~P G  /\  A. b  e.  om  ( F `  suc  b
)  C_  ( F `  b )  /\  -.  |^|
ran  F  e.  ran  F )  ->  ( G  e.  V  ->  om  ~<_*  G ) )
1918impcom 419 1  |-  ( ( G  e.  V  /\  ( F : om --> ~P G  /\  A. b  e.  om  ( F `  suc  b
)  C_  ( F `  b )  /\  -.  |^|
ran  F  e.  ran  F ) )  ->  om  ~<_*  G )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   {crab 2547    \ cdif 3149    i^i cin 3151    C_ wss 3152    C. wpss 3153   ~Pcpw 3625   |^|cint 3862   class class class wbr 4023    e. cmpt 4077   suc csuc 4394   omcom 4656   ran crn 4690    o. ccom 4693   iotacio 5217   -->wf 5251   ` cfv 5255   iota_crio 6297    ~~ cen 6860    ~<_* cwdom 7271
This theorem is referenced by:  isf32lem12  7990  fin33i  7995
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 6304  df-recs 6388  df-1o 6479  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-wdom 7273  df-card 7572
  Copyright terms: Public domain W3C validator