MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem11 Structured version   Unicode version

Theorem isf32lem11 8244
Description: Lemma for isfin3-2 8248. Remove hypotheses from isf32lem10 8243. (Contributed by Stefan O'Rear, 17-May-2015.)
Assertion
Ref Expression
isf32lem11  |-  ( ( G  e.  V  /\  ( F : om --> ~P G  /\  A. b  e.  om  ( F `  suc  b
)  C_  ( F `  b )  /\  -.  |^|
ran  F  e.  ran  F ) )  ->  om  ~<_*  G )
Distinct variable groups:    F, b    G, b
Allowed substitution hint:    V( b)

Proof of Theorem isf32lem11
Dummy variables  c 
d  e  f  g  h  k  l are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 958 . . 3  |-  ( ( F : om --> ~P G  /\  A. b  e.  om  ( F `  suc  b
)  C_  ( F `  b )  /\  -.  |^|
ran  F  e.  ran  F )  ->  F : om
--> ~P G )
2 suceq 4647 . . . . . . . 8  |-  ( b  =  c  ->  suc  b  =  suc  c )
32fveq2d 5733 . . . . . . 7  |-  ( b  =  c  ->  ( F `  suc  b )  =  ( F `  suc  c ) )
4 fveq2 5729 . . . . . . 7  |-  ( b  =  c  ->  ( F `  b )  =  ( F `  c ) )
53, 4sseq12d 3378 . . . . . 6  |-  ( b  =  c  ->  (
( F `  suc  b )  C_  ( F `  b )  <->  ( F `  suc  c
)  C_  ( F `  c ) ) )
65cbvralv 2933 . . . . 5  |-  ( A. b  e.  om  ( F `  suc  b ) 
C_  ( F `  b )  <->  A. c  e.  om  ( F `  suc  c )  C_  ( F `  c )
)
76biimpi 188 . . . 4  |-  ( A. b  e.  om  ( F `  suc  b ) 
C_  ( F `  b )  ->  A. c  e.  om  ( F `  suc  c )  C_  ( F `  c )
)
873ad2ant2 980 . . 3  |-  ( ( F : om --> ~P G  /\  A. b  e.  om  ( F `  suc  b
)  C_  ( F `  b )  /\  -.  |^|
ran  F  e.  ran  F )  ->  A. c  e.  om  ( F `  suc  c )  C_  ( F `  c )
)
9 simp3 960 . . 3  |-  ( ( F : om --> ~P G  /\  A. b  e.  om  ( F `  suc  b
)  C_  ( F `  b )  /\  -.  |^|
ran  F  e.  ran  F )  ->  -.  |^| ran  F  e.  ran  F )
10 suceq 4647 . . . . . 6  |-  ( e  =  d  ->  suc  e  =  suc  d )
1110fveq2d 5733 . . . . 5  |-  ( e  =  d  ->  ( F `  suc  e )  =  ( F `  suc  d ) )
12 fveq2 5729 . . . . 5  |-  ( e  =  d  ->  ( F `  e )  =  ( F `  d ) )
1311, 12psseq12d 3442 . . . 4  |-  ( e  =  d  ->  (
( F `  suc  e )  C.  ( F `  e )  <->  ( F `  suc  d
)  C.  ( F `  d ) ) )
1413cbvrabv 2956 . . 3  |-  { e  e.  om  |  ( F `  suc  e
)  C.  ( F `  e ) }  =  { d  e.  om  |  ( F `  suc  d )  C.  ( F `  d ) }
15 eqid 2437 . . 3  |-  ( f  e.  om  |->  ( iota_ g  e.  { e  e. 
om  |  ( F `
 suc  e )  C.  ( F `  e
) }  ( g  i^i  { e  e. 
om  |  ( F `
 suc  e )  C.  ( F `  e
) } )  ~~  f ) )  =  ( f  e.  om  |->  ( iota_ g  e.  {
e  e.  om  | 
( F `  suc  e )  C.  ( F `  e ) }  ( g  i^i 
{ e  e.  om  |  ( F `  suc  e )  C.  ( F `  e ) } )  ~~  f
) )
16 eqid 2437 . . 3  |-  ( ( h  e.  { e  e.  om  |  ( F `  suc  e
)  C.  ( F `  e ) }  |->  ( ( F `  h
)  \  ( F `  suc  h ) ) )  o.  ( f  e.  om  |->  ( iota_ g  e.  { e  e. 
om  |  ( F `
 suc  e )  C.  ( F `  e
) }  ( g  i^i  { e  e. 
om  |  ( F `
 suc  e )  C.  ( F `  e
) } )  ~~  f ) ) )  =  ( ( h  e.  { e  e. 
om  |  ( F `
 suc  e )  C.  ( F `  e
) }  |->  ( ( F `  h ) 
\  ( F `  suc  h ) ) )  o.  ( f  e. 
om  |->  ( iota_ g  e. 
{ e  e.  om  |  ( F `  suc  e )  C.  ( F `  e ) }  ( g  i^i 
{ e  e.  om  |  ( F `  suc  e )  C.  ( F `  e ) } )  ~~  f
) ) )
17 eqid 2437 . . 3  |-  ( k  e.  G  |->  ( iota l ( l  e. 
om  /\  k  e.  ( ( ( h  e.  { e  e. 
om  |  ( F `
 suc  e )  C.  ( F `  e
) }  |->  ( ( F `  h ) 
\  ( F `  suc  h ) ) )  o.  ( f  e. 
om  |->  ( iota_ g  e. 
{ e  e.  om  |  ( F `  suc  e )  C.  ( F `  e ) }  ( g  i^i 
{ e  e.  om  |  ( F `  suc  e )  C.  ( F `  e ) } )  ~~  f
) ) ) `  l ) ) ) )  =  ( k  e.  G  |->  ( iota l ( l  e. 
om  /\  k  e.  ( ( ( h  e.  { e  e. 
om  |  ( F `
 suc  e )  C.  ( F `  e
) }  |->  ( ( F `  h ) 
\  ( F `  suc  h ) ) )  o.  ( f  e. 
om  |->  ( iota_ g  e. 
{ e  e.  om  |  ( F `  suc  e )  C.  ( F `  e ) }  ( g  i^i 
{ e  e.  om  |  ( F `  suc  e )  C.  ( F `  e ) } )  ~~  f
) ) ) `  l ) ) ) )
181, 8, 9, 14, 15, 16, 17isf32lem10 8243 . 2  |-  ( ( F : om --> ~P G  /\  A. b  e.  om  ( F `  suc  b
)  C_  ( F `  b )  /\  -.  |^|
ran  F  e.  ran  F )  ->  ( G  e.  V  ->  om  ~<_*  G ) )
1918impcom 421 1  |-  ( ( G  e.  V  /\  ( F : om --> ~P G  /\  A. b  e.  om  ( F `  suc  b
)  C_  ( F `  b )  /\  -.  |^|
ran  F  e.  ran  F ) )  ->  om  ~<_*  G )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    /\ w3a 937    e. wcel 1726   A.wral 2706   {crab 2710    \ cdif 3318    i^i cin 3320    C_ wss 3321    C. wpss 3322   ~Pcpw 3800   |^|cint 4051   class class class wbr 4213    e. cmpt 4267   suc csuc 4584   omcom 4846   ran crn 4880    o. ccom 4883   iotacio 5417   -->wf 5451   ` cfv 5455   iota_crio 6543    ~~ cen 7107    ~<_* cwdom 7526
This theorem is referenced by:  isf32lem12  8245  fin33i  8250
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-int 4052  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-se 4543  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-isom 5464  df-riota 6550  df-recs 6634  df-1o 6725  df-er 6906  df-en 7111  df-dom 7112  df-sdom 7113  df-fin 7114  df-wdom 7528  df-card 7827
  Copyright terms: Public domain W3C validator