MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem5 Structured version   Unicode version

Theorem isf32lem5 8237
Description: Lemma for isfin3-2 8247. There are infinite decrease points. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a  |-  ( ph  ->  F : om --> ~P G
)
isf32lem.b  |-  ( ph  ->  A. x  e.  om  ( F `  suc  x
)  C_  ( F `  x ) )
isf32lem.c  |-  ( ph  ->  -.  |^| ran  F  e. 
ran  F )
isf32lem.d  |-  S  =  { y  e.  om  |  ( F `  suc  y )  C.  ( F `  y ) }
Assertion
Ref Expression
isf32lem5  |-  ( ph  ->  -.  S  e.  Fin )
Distinct variable groups:    x, y, ph    x, F, y    x, S, y
Allowed substitution hints:    G( x, y)

Proof of Theorem isf32lem5
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isf32lem.a . . . 4  |-  ( ph  ->  F : om --> ~P G
)
2 isf32lem.b . . . 4  |-  ( ph  ->  A. x  e.  om  ( F `  suc  x
)  C_  ( F `  x ) )
3 isf32lem.c . . . 4  |-  ( ph  ->  -.  |^| ran  F  e. 
ran  F )
41, 2, 3isf32lem2 8234 . . 3  |-  ( (
ph  /\  a  e.  om )  ->  E. b  e.  om  ( a  e.  b  /\  ( F `
 suc  b )  C.  ( F `  b
) ) )
54ralrimiva 2789 . 2  |-  ( ph  ->  A. a  e.  om  E. b  e.  om  (
a  e.  b  /\  ( F `  suc  b
)  C.  ( F `  b ) ) )
6 isf32lem.d . . . . . . . 8  |-  S  =  { y  e.  om  |  ( F `  suc  y )  C.  ( F `  y ) }
7 ssrab2 3428 . . . . . . . 8  |-  { y  e.  om  |  ( F `  suc  y
)  C.  ( F `  y ) }  C_  om
86, 7eqsstri 3378 . . . . . . 7  |-  S  C_  om
9 nnunifi 7358 . . . . . . 7  |-  ( ( S  C_  om  /\  S  e.  Fin )  ->  U. S  e.  om )
108, 9mpan 652 . . . . . 6  |-  ( S  e.  Fin  ->  U. S  e.  om )
1110adantl 453 . . . . 5  |-  ( (
ph  /\  S  e.  Fin )  ->  U. S  e.  om )
12 elssuni 4043 . . . . . . . . . . . . 13  |-  ( b  e.  S  ->  b  C_ 
U. S )
13 nnon 4851 . . . . . . . . . . . . . 14  |-  ( b  e.  om  ->  b  e.  On )
14 omsson 4849 . . . . . . . . . . . . . . 15  |-  om  C_  On
1514, 11sseldi 3346 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  S  e.  Fin )  ->  U. S  e.  On )
16 ontri1 4615 . . . . . . . . . . . . . 14  |-  ( ( b  e.  On  /\  U. S  e.  On )  ->  ( b  C_  U. S  <->  -.  U. S  e.  b ) )
1713, 15, 16syl2anr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  S  e.  Fin )  /\  b  e.  om )  ->  (
b  C_  U. S  <->  -.  U. S  e.  b ) )
1812, 17syl5ib 211 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  S  e.  Fin )  /\  b  e.  om )  ->  (
b  e.  S  ->  -.  U. S  e.  b ) )
1918con2d 109 . . . . . . . . . . 11  |-  ( ( ( ph  /\  S  e.  Fin )  /\  b  e.  om )  ->  ( U. S  e.  b  ->  -.  b  e.  S
) )
2019impr 603 . . . . . . . . . 10  |-  ( ( ( ph  /\  S  e.  Fin )  /\  (
b  e.  om  /\  U. S  e.  b ) )  ->  -.  b  e.  S )
216eleq2i 2500 . . . . . . . . . 10  |-  ( b  e.  S  <->  b  e.  { y  e.  om  | 
( F `  suc  y )  C.  ( F `  y ) } )
2220, 21sylnib 296 . . . . . . . . 9  |-  ( ( ( ph  /\  S  e.  Fin )  /\  (
b  e.  om  /\  U. S  e.  b ) )  ->  -.  b  e.  { y  e.  om  |  ( F `  suc  y )  C.  ( F `  y ) } )
23 suceq 4646 . . . . . . . . . . . . 13  |-  ( y  =  b  ->  suc  y  =  suc  b )
2423fveq2d 5732 . . . . . . . . . . . 12  |-  ( y  =  b  ->  ( F `  suc  y )  =  ( F `  suc  b ) )
25 fveq2 5728 . . . . . . . . . . . 12  |-  ( y  =  b  ->  ( F `  y )  =  ( F `  b ) )
2624, 25psseq12d 3441 . . . . . . . . . . 11  |-  ( y  =  b  ->  (
( F `  suc  y )  C.  ( F `  y )  <->  ( F `  suc  b
)  C.  ( F `  b ) ) )
2726elrab3 3093 . . . . . . . . . 10  |-  ( b  e.  om  ->  (
b  e.  { y  e.  om  |  ( F `  suc  y
)  C.  ( F `  y ) }  <->  ( F `  suc  b )  C.  ( F `  b ) ) )
2827ad2antrl 709 . . . . . . . . 9  |-  ( ( ( ph  /\  S  e.  Fin )  /\  (
b  e.  om  /\  U. S  e.  b ) )  ->  ( b  e.  { y  e.  om  |  ( F `  suc  y )  C.  ( F `  y ) } 
<->  ( F `  suc  b )  C.  ( F `  b )
) )
2922, 28mtbid 292 . . . . . . . 8  |-  ( ( ( ph  /\  S  e.  Fin )  /\  (
b  e.  om  /\  U. S  e.  b ) )  ->  -.  ( F `  suc  b ) 
C.  ( F `  b ) )
3029expr 599 . . . . . . 7  |-  ( ( ( ph  /\  S  e.  Fin )  /\  b  e.  om )  ->  ( U. S  e.  b  ->  -.  ( F `  suc  b )  C.  ( F `  b )
) )
31 imnan 412 . . . . . . 7  |-  ( ( U. S  e.  b  ->  -.  ( F `  suc  b )  C.  ( F `  b ) )  <->  -.  ( U. S  e.  b  /\  ( F `  suc  b
)  C.  ( F `  b ) ) )
3230, 31sylib 189 . . . . . 6  |-  ( ( ( ph  /\  S  e.  Fin )  /\  b  e.  om )  ->  -.  ( U. S  e.  b  /\  ( F `  suc  b )  C.  ( F `  b )
) )
3332nrexdv 2809 . . . . 5  |-  ( (
ph  /\  S  e.  Fin )  ->  -.  E. b  e.  om  ( U. S  e.  b  /\  ( F `  suc  b )  C.  ( F `  b )
) )
34 eleq1 2496 . . . . . . . . 9  |-  ( a  =  U. S  -> 
( a  e.  b  <->  U. S  e.  b
) )
3534anbi1d 686 . . . . . . . 8  |-  ( a  =  U. S  -> 
( ( a  e.  b  /\  ( F `
 suc  b )  C.  ( F `  b
) )  <->  ( U. S  e.  b  /\  ( F `  suc  b
)  C.  ( F `  b ) ) ) )
3635rexbidv 2726 . . . . . . 7  |-  ( a  =  U. S  -> 
( E. b  e. 
om  ( a  e.  b  /\  ( F `
 suc  b )  C.  ( F `  b
) )  <->  E. b  e.  om  ( U. S  e.  b  /\  ( F `  suc  b ) 
C.  ( F `  b ) ) ) )
3736notbid 286 . . . . . 6  |-  ( a  =  U. S  -> 
( -.  E. b  e.  om  ( a  e.  b  /\  ( F `
 suc  b )  C.  ( F `  b
) )  <->  -.  E. b  e.  om  ( U. S  e.  b  /\  ( F `  suc  b ) 
C.  ( F `  b ) ) ) )
3837rspcev 3052 . . . . 5  |-  ( ( U. S  e.  om  /\ 
-.  E. b  e.  om  ( U. S  e.  b  /\  ( F `  suc  b )  C.  ( F `  b )
) )  ->  E. a  e.  om  -.  E. b  e.  om  ( a  e.  b  /\  ( F `
 suc  b )  C.  ( F `  b
) ) )
3911, 33, 38syl2anc 643 . . . 4  |-  ( (
ph  /\  S  e.  Fin )  ->  E. a  e.  om  -.  E. b  e.  om  ( a  e.  b  /\  ( F `
 suc  b )  C.  ( F `  b
) ) )
40 rexnal 2716 . . . 4  |-  ( E. a  e.  om  -.  E. b  e.  om  (
a  e.  b  /\  ( F `  suc  b
)  C.  ( F `  b ) )  <->  -.  A. a  e.  om  E. b  e. 
om  ( a  e.  b  /\  ( F `
 suc  b )  C.  ( F `  b
) ) )
4139, 40sylib 189 . . 3  |-  ( (
ph  /\  S  e.  Fin )  ->  -.  A. a  e.  om  E. b  e.  om  ( a  e.  b  /\  ( F `
 suc  b )  C.  ( F `  b
) ) )
4241ex 424 . 2  |-  ( ph  ->  ( S  e.  Fin  ->  -.  A. a  e. 
om  E. b  e.  om  ( a  e.  b  /\  ( F `  suc  b )  C.  ( F `  b )
) ) )
435, 42mt2d 111 1  |-  ( ph  ->  -.  S  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705   E.wrex 2706   {crab 2709    C_ wss 3320    C. wpss 3321   ~Pcpw 3799   U.cuni 4015   |^|cint 4050   Oncon0 4581   suc csuc 4583   omcom 4845   ran crn 4879   -->wf 5450   ` cfv 5454   Fincfn 7109
This theorem is referenced by:  isf32lem6  8238  isf32lem7  8239  isf32lem8  8240
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-1o 6724  df-er 6905  df-en 7110  df-fin 7113
  Copyright terms: Public domain W3C validator