MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem8 Unicode version

Theorem isf32lem8 8073
Description: Lemma for isfin3-2 8080. K sets are subsets of the base. (Contributed by Stefan O'Rear, 6-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a  |-  ( ph  ->  F : om --> ~P G
)
isf32lem.b  |-  ( ph  ->  A. x  e.  om  ( F `  suc  x
)  C_  ( F `  x ) )
isf32lem.c  |-  ( ph  ->  -.  |^| ran  F  e. 
ran  F )
isf32lem.d  |-  S  =  { y  e.  om  |  ( F `  suc  y )  C.  ( F `  y ) }
isf32lem.e  |-  J  =  ( u  e.  om  |->  ( iota_ v  e.  S
( v  i^i  S
)  ~~  u )
)
isf32lem.f  |-  K  =  ( ( w  e.  S  |->  ( ( F `
 w )  \ 
( F `  suc  w ) ) )  o.  J )
Assertion
Ref Expression
isf32lem8  |-  ( (
ph  /\  A  e.  om )  ->  ( K `  A )  C_  G
)
Distinct variable groups:    x, w    v, u, w, x, y,
ph    w, A, x, y   
w, F, x, y   
u, S, v, w, x, y    w, J, x, y    x, K, y
Allowed substitution hints:    A( v, u)    F( v, u)    G( x, y, w, v, u)    J( v, u)    K( w, v, u)

Proof of Theorem isf32lem8
StepHypRef Expression
1 isf32lem.f . . . 4  |-  K  =  ( ( w  e.  S  |->  ( ( F `
 w )  \ 
( F `  suc  w ) ) )  o.  J )
21fveq1i 5606 . . 3  |-  ( K `
 A )  =  ( ( ( w  e.  S  |->  ( ( F `  w ) 
\  ( F `  suc  w ) ) )  o.  J ) `  A )
3 isf32lem.d . . . . . . . 8  |-  S  =  { y  e.  om  |  ( F `  suc  y )  C.  ( F `  y ) }
4 ssrab2 3334 . . . . . . . 8  |-  { y  e.  om  |  ( F `  suc  y
)  C.  ( F `  y ) }  C_  om
53, 4eqsstri 3284 . . . . . . 7  |-  S  C_  om
6 isf32lem.a . . . . . . . 8  |-  ( ph  ->  F : om --> ~P G
)
7 isf32lem.b . . . . . . . 8  |-  ( ph  ->  A. x  e.  om  ( F `  suc  x
)  C_  ( F `  x ) )
8 isf32lem.c . . . . . . . 8  |-  ( ph  ->  -.  |^| ran  F  e. 
ran  F )
96, 7, 8, 3isf32lem5 8070 . . . . . . 7  |-  ( ph  ->  -.  S  e.  Fin )
10 isf32lem.e . . . . . . . 8  |-  J  =  ( u  e.  om  |->  ( iota_ v  e.  S
( v  i^i  S
)  ~~  u )
)
1110fin23lem22 8040 . . . . . . 7  |-  ( ( S  C_  om  /\  -.  S  e.  Fin )  ->  J : om -1-1-onto-> S )
125, 9, 11sylancr 644 . . . . . 6  |-  ( ph  ->  J : om -1-1-onto-> S )
13 f1of 5552 . . . . . 6  |-  ( J : om -1-1-onto-> S  ->  J : om
--> S )
1412, 13syl 15 . . . . 5  |-  ( ph  ->  J : om --> S )
15 fvco3 5676 . . . . 5  |-  ( ( J : om --> S  /\  A  e.  om )  ->  ( ( ( w  e.  S  |->  ( ( F `  w ) 
\  ( F `  suc  w ) ) )  o.  J ) `  A )  =  ( ( w  e.  S  |->  ( ( F `  w )  \  ( F `  suc  w ) ) ) `  ( J `  A )
) )
1614, 15sylan 457 . . . 4  |-  ( (
ph  /\  A  e.  om )  ->  ( (
( w  e.  S  |->  ( ( F `  w )  \  ( F `  suc  w ) ) )  o.  J
) `  A )  =  ( ( w  e.  S  |->  ( ( F `  w ) 
\  ( F `  suc  w ) ) ) `
 ( J `  A ) ) )
17 ffvelrn 5743 . . . . . 6  |-  ( ( J : om --> S  /\  A  e.  om )  ->  ( J `  A
)  e.  S )
1814, 17sylan 457 . . . . 5  |-  ( (
ph  /\  A  e.  om )  ->  ( J `  A )  e.  S
)
19 fveq2 5605 . . . . . . 7  |-  ( w  =  ( J `  A )  ->  ( F `  w )  =  ( F `  ( J `  A ) ) )
20 suceq 4536 . . . . . . . 8  |-  ( w  =  ( J `  A )  ->  suc  w  =  suc  ( J `
 A ) )
2120fveq2d 5609 . . . . . . 7  |-  ( w  =  ( J `  A )  ->  ( F `  suc  w )  =  ( F `  suc  ( J `  A
) ) )
2219, 21difeq12d 3371 . . . . . 6  |-  ( w  =  ( J `  A )  ->  (
( F `  w
)  \  ( F `  suc  w ) )  =  ( ( F `
 ( J `  A ) )  \ 
( F `  suc  ( J `  A ) ) ) )
23 eqid 2358 . . . . . 6  |-  ( w  e.  S  |->  ( ( F `  w ) 
\  ( F `  suc  w ) ) )  =  ( w  e.  S  |->  ( ( F `
 w )  \ 
( F `  suc  w ) ) )
24 fvex 5619 . . . . . . 7  |-  ( F `
 ( J `  A ) )  e. 
_V
25 difexg 4241 . . . . . . 7  |-  ( ( F `  ( J `
 A ) )  e.  _V  ->  (
( F `  ( J `  A )
)  \  ( F `  suc  ( J `  A ) ) )  e.  _V )
2624, 25ax-mp 8 . . . . . 6  |-  ( ( F `  ( J `
 A ) ) 
\  ( F `  suc  ( J `  A
) ) )  e. 
_V
2722, 23, 26fvmpt 5682 . . . . 5  |-  ( ( J `  A )  e.  S  ->  (
( w  e.  S  |->  ( ( F `  w )  \  ( F `  suc  w ) ) ) `  ( J `  A )
)  =  ( ( F `  ( J `
 A ) ) 
\  ( F `  suc  ( J `  A
) ) ) )
2818, 27syl 15 . . . 4  |-  ( (
ph  /\  A  e.  om )  ->  ( (
w  e.  S  |->  ( ( F `  w
)  \  ( F `  suc  w ) ) ) `  ( J `
 A ) )  =  ( ( F `
 ( J `  A ) )  \ 
( F `  suc  ( J `  A ) ) ) )
2916, 28eqtrd 2390 . . 3  |-  ( (
ph  /\  A  e.  om )  ->  ( (
( w  e.  S  |->  ( ( F `  w )  \  ( F `  suc  w ) ) )  o.  J
) `  A )  =  ( ( F `
 ( J `  A ) )  \ 
( F `  suc  ( J `  A ) ) ) )
302, 29syl5eq 2402 . 2  |-  ( (
ph  /\  A  e.  om )  ->  ( K `  A )  =  ( ( F `  ( J `  A )
)  \  ( F `  suc  ( J `  A ) ) ) )
31 difss 3379 . . 3  |-  ( ( F `  ( J `
 A ) ) 
\  ( F `  suc  ( J `  A
) ) )  C_  ( F `  ( J `
 A ) )
326adantr 451 . . . . 5  |-  ( (
ph  /\  A  e.  om )  ->  F : om
--> ~P G )
335, 18sseldi 3254 . . . . 5  |-  ( (
ph  /\  A  e.  om )  ->  ( J `  A )  e.  om )
34 ffvelrn 5743 . . . . 5  |-  ( ( F : om --> ~P G  /\  ( J `  A
)  e.  om )  ->  ( F `  ( J `  A )
)  e.  ~P G
)
3532, 33, 34syl2anc 642 . . . 4  |-  ( (
ph  /\  A  e.  om )  ->  ( F `  ( J `  A
) )  e.  ~P G )
36 elpwi 3709 . . . 4  |-  ( ( F `  ( J `
 A ) )  e.  ~P G  -> 
( F `  ( J `  A )
)  C_  G )
3735, 36syl 15 . . 3  |-  ( (
ph  /\  A  e.  om )  ->  ( F `  ( J `  A
) )  C_  G
)
3831, 37syl5ss 3266 . 2  |-  ( (
ph  /\  A  e.  om )  ->  ( ( F `  ( J `  A ) )  \ 
( F `  suc  ( J `  A ) ) )  C_  G
)
3930, 38eqsstrd 3288 1  |-  ( (
ph  /\  A  e.  om )  ->  ( K `  A )  C_  G
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710   A.wral 2619   {crab 2623   _Vcvv 2864    \ cdif 3225    i^i cin 3227    C_ wss 3228    C. wpss 3229   ~Pcpw 3701   |^|cint 3941   class class class wbr 4102    e. cmpt 4156   suc csuc 4473   omcom 4735   ran crn 4769    o. ccom 4772   -->wf 5330   -1-1-onto->wf1o 5333   ` cfv 5334   iota_crio 6381    ~~ cen 6945   Fincfn 6948
This theorem is referenced by:  isf32lem9  8074
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-int 3942  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-se 4432  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-isom 5343  df-riota 6388  df-recs 6472  df-1o 6563  df-er 6744  df-en 6949  df-dom 6950  df-sdom 6951  df-fin 6952  df-card 7659
  Copyright terms: Public domain W3C validator