MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf33lem Structured version   Unicode version

Theorem isf33lem 8246
Description: Lemma for isfin3-3 8248. (Contributed by Stefan O'Rear, 17-May-2015.)
Assertion
Ref Expression
isf33lem  |- FinIII  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
Distinct variable group:    g, a, x

Proof of Theorem isf33lem
Dummy variables  b 
f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfin32i 8245 . . . 4  |-  ( f  e. FinIII  ->  -.  om  ~<_*  f )
2 fveq1 5727 . . . . . . . . . . 11  |-  ( a  =  b  ->  (
a `  suc  x )  =  ( b `  suc  x ) )
3 fveq1 5727 . . . . . . . . . . 11  |-  ( a  =  b  ->  (
a `  x )  =  ( b `  x ) )
42, 3sseq12d 3377 . . . . . . . . . 10  |-  ( a  =  b  ->  (
( a `  suc  x )  C_  (
a `  x )  <->  ( b `  suc  x
)  C_  ( b `  x ) ) )
54ralbidv 2725 . . . . . . . . 9  |-  ( a  =  b  ->  ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  <->  A. x  e.  om  (
b `  suc  x ) 
C_  ( b `  x ) ) )
6 rneq 5095 . . . . . . . . . . 11  |-  ( a  =  b  ->  ran  a  =  ran  b )
76inteqd 4055 . . . . . . . . . 10  |-  ( a  =  b  ->  |^| ran  a  =  |^| ran  b
)
87, 6eleq12d 2504 . . . . . . . . 9  |-  ( a  =  b  ->  ( |^| ran  a  e.  ran  a 
<-> 
|^| ran  b  e.  ran  b ) )
95, 8imbi12d 312 . . . . . . . 8  |-  ( a  =  b  ->  (
( A. x  e. 
om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a )  <->  ( A. x  e.  om  (
b `  suc  x ) 
C_  ( b `  x )  ->  |^| ran  b  e.  ran  b ) ) )
109cbvralv 2932 . . . . . . 7  |-  ( A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a )  <->  A. b  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( b `  suc  x )  C_  (
b `  x )  ->  |^| ran  b  e. 
ran  b ) )
11 pweq 3802 . . . . . . . . 9  |-  ( g  =  y  ->  ~P g  =  ~P y
)
1211oveq1d 6096 . . . . . . . 8  |-  ( g  =  y  ->  ( ~P g  ^m  om )  =  ( ~P y  ^m  om ) )
1312raleqdv 2910 . . . . . . 7  |-  ( g  =  y  ->  ( A. b  e.  ( ~P g  ^m  om )
( A. x  e. 
om  ( b `  suc  x )  C_  (
b `  x )  ->  |^| ran  b  e. 
ran  b )  <->  A. b  e.  ( ~P y  ^m  om ) ( A. x  e.  om  ( b `  suc  x )  C_  (
b `  x )  ->  |^| ran  b  e. 
ran  b ) ) )
1410, 13syl5bb 249 . . . . . 6  |-  ( g  =  y  ->  ( A. a  e.  ( ~P g  ^m  om )
( A. x  e. 
om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a )  <->  A. b  e.  ( ~P y  ^m  om ) ( A. x  e.  om  ( b `  suc  x )  C_  (
b `  x )  ->  |^| ran  b  e. 
ran  b ) ) )
1514cbvabv 2555 . . . . 5  |-  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }  =  { y  | 
A. b  e.  ( ~P y  ^m  om ) ( A. x  e.  om  ( b `  suc  x )  C_  (
b `  x )  ->  |^| ran  b  e. 
ran  b ) }
1615isf32lem12 8244 . . . 4  |-  ( f  e. FinIII  ->  ( -.  om  ~<_*  f  ->  f  e.  {
g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) } ) )
171, 16mpd 15 . . 3  |-  ( f  e. FinIII  ->  f  e.  {
g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) } )
1810abbii 2548 . . . 4  |-  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }  =  { g  | 
A. b  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( b `  suc  x )  C_  (
b `  x )  ->  |^| ran  b  e. 
ran  b ) }
1918fin23lem41 8232 . . 3  |-  ( f  e.  { g  | 
A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }  ->  f  e. FinIII )
2017, 19impbii 181 . 2  |-  ( f  e. FinIII  <-> 
f  e.  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) } )
2120eqriv 2433 1  |- FinIII  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1652    e. wcel 1725   {cab 2422   A.wral 2705    C_ wss 3320   ~Pcpw 3799   |^|cint 4050   class class class wbr 4212   suc csuc 4583   omcom 4845   ran crn 4879   ` cfv 5454  (class class class)co 6081    ^m cmap 7018    ~<_* cwdom 7525  FinIIIcfin3 8161
This theorem is referenced by:  isfin3-2  8247  isfin3-3  8248  fin23  8269
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-seqom 6705  df-1o 6724  df-oadd 6728  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-wdom 7527  df-card 7826  df-fin4 8167  df-fin3 8168
  Copyright terms: Public domain W3C validator