MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfcf Structured version   Unicode version

Theorem isfcf 18068
Description: The property of being a cluster point of a function. (Contributed by Jeff Hankins, 24-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
isfcf  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fClusf  L ) `  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) ) ) )
Distinct variable groups:    A, o    o, s, J    o, L, s    o, F, s    o, X, s    o, Y, s
Allowed substitution hint:    A( s)

Proof of Theorem isfcf
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fcfval 18067 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( J  fClusf  L ) `
 F )  =  ( J  fClus  ( ( X  FilMap  F ) `  L ) ) )
21eleq2d 2505 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fClusf  L ) `  F )  <->  A  e.  ( J  fClus  ( ( X  FilMap  F ) `  L ) ) ) )
3 simp1 958 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  J  e.  (TopOn `  X )
)
4 toponmax 16995 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
5 filfbas 17882 . . . 4  |-  ( L  e.  ( Fil `  Y
)  ->  L  e.  ( fBas `  Y )
)
6 id 21 . . . 4  |-  ( F : Y --> X  ->  F : Y --> X )
7 fmfil 17978 . . . 4  |-  ( ( X  e.  J  /\  L  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( ( X  FilMap  F ) `  L )  e.  ( Fil `  X
) )
84, 5, 6, 7syl3an 1227 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( X  FilMap  F ) `
 L )  e.  ( Fil `  X
) )
9 fclsopn 18048 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  (
( X  FilMap  F ) `
 L )  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fClus  ( ( X  FilMap  F ) `  L ) )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. x  e.  ( ( X  FilMap  F ) `  L ) ( o  i^i  x
)  =/=  (/) ) ) ) )
103, 8, 9syl2anc 644 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( J  fClus  ( ( X  FilMap  F ) `  L ) )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. x  e.  ( ( X  FilMap  F ) `  L ) ( o  i^i  x
)  =/=  (/) ) ) ) )
11 simpll1 997 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  s  e.  L )  ->  J  e.  (TopOn `  X )
)
1211, 4syl 16 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  s  e.  L )  ->  X  e.  J )
13 simpll2 998 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  s  e.  L )  ->  L  e.  ( Fil `  Y
) )
1413, 5syl 16 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  s  e.  L )  ->  L  e.  ( fBas `  Y
) )
15 simpll3 999 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  s  e.  L )  ->  F : Y --> X )
16 simpl2 962 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  L  e.  ( Fil `  Y
) )
17 fgfil 17909 . . . . . . . . . . . 12  |-  ( L  e.  ( Fil `  Y
)  ->  ( Y filGen L )  =  L )
1816, 17syl 16 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  ( Y filGen L )  =  L )
1918eleq2d 2505 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  (
s  e.  ( Y
filGen L )  <->  s  e.  L ) )
2019biimpar 473 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  s  e.  L )  ->  s  e.  ( Y filGen L ) )
21 eqid 2438 . . . . . . . . . 10  |-  ( Y
filGen L )  =  ( Y filGen L )
2221imaelfm 17985 . . . . . . . . 9  |-  ( ( ( X  e.  J  /\  L  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  s  e.  ( Y filGen L ) )  ->  ( F "
s )  e.  ( ( X  FilMap  F ) `
 L ) )
2312, 14, 15, 20, 22syl31anc 1188 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  s  e.  L )  ->  ( F " s )  e.  ( ( X  FilMap  F ) `  L ) )
24 ineq2 3538 . . . . . . . . . 10  |-  ( x  =  ( F "
s )  ->  (
o  i^i  x )  =  ( o  i^i  ( F " s
) ) )
2524neeq1d 2616 . . . . . . . . 9  |-  ( x  =  ( F "
s )  ->  (
( o  i^i  x
)  =/=  (/)  <->  ( o  i^i  ( F " s
) )  =/=  (/) ) )
2625rspcv 3050 . . . . . . . 8  |-  ( ( F " s )  e.  ( ( X 
FilMap  F ) `  L
)  ->  ( A. x  e.  ( ( X  FilMap  F ) `  L ) ( o  i^i  x )  =/=  (/)  ->  ( o  i^i  ( F " s
) )  =/=  (/) ) )
2723, 26syl 16 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  s  e.  L )  ->  ( A. x  e.  (
( X  FilMap  F ) `
 L ) ( o  i^i  x )  =/=  (/)  ->  ( o  i^i  ( F " s
) )  =/=  (/) ) )
2827ralrimdva 2798 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  ( A. x  e.  (
( X  FilMap  F ) `
 L ) ( o  i^i  x )  =/=  (/)  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) )
29 elfm 17981 . . . . . . . . . . 11  |-  ( ( X  e.  J  /\  L  e.  ( fBas `  Y )  /\  F : Y --> X )  -> 
( x  e.  ( ( X  FilMap  F ) `
 L )  <->  ( x  C_  X  /\  E. s  e.  L  ( F " s )  C_  x
) ) )
304, 5, 6, 29syl3an 1227 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
x  e.  ( ( X  FilMap  F ) `  L )  <->  ( x  C_  X  /\  E. s  e.  L  ( F " s )  C_  x
) ) )
3130adantr 453 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  (
x  e.  ( ( X  FilMap  F ) `  L )  <->  ( x  C_  X  /\  E. s  e.  L  ( F " s )  C_  x
) ) )
3231simplbda 609 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  x  e.  ( ( X  FilMap  F ) `  L ) )  ->  E. s  e.  L  ( F " s )  C_  x
)
33 r19.29r 2849 . . . . . . . . . 10  |-  ( ( E. s  e.  L  ( F " s ) 
C_  x  /\  A. s  e.  L  (
o  i^i  ( F " s ) )  =/=  (/) )  ->  E. s  e.  L  ( ( F " s )  C_  x  /\  ( o  i^i  ( F " s
) )  =/=  (/) ) )
34 sslin 3569 . . . . . . . . . . . 12  |-  ( ( F " s ) 
C_  x  ->  (
o  i^i  ( F " s ) )  C_  ( o  i^i  x
) )
35 ssn0 3662 . . . . . . . . . . . 12  |-  ( ( ( o  i^i  ( F " s ) ) 
C_  ( o  i^i  x )  /\  (
o  i^i  ( F " s ) )  =/=  (/) )  ->  ( o  i^i  x )  =/=  (/) )
3634, 35sylan 459 . . . . . . . . . . 11  |-  ( ( ( F " s
)  C_  x  /\  ( o  i^i  ( F " s ) )  =/=  (/) )  ->  (
o  i^i  x )  =/=  (/) )
3736rexlimivw 2828 . . . . . . . . . 10  |-  ( E. s  e.  L  ( ( F " s
)  C_  x  /\  ( o  i^i  ( F " s ) )  =/=  (/) )  ->  (
o  i^i  x )  =/=  (/) )
3833, 37syl 16 . . . . . . . . 9  |-  ( ( E. s  e.  L  ( F " s ) 
C_  x  /\  A. s  e.  L  (
o  i^i  ( F " s ) )  =/=  (/) )  ->  ( o  i^i  x )  =/=  (/) )
3938ex 425 . . . . . . . 8  |-  ( E. s  e.  L  ( F " s ) 
C_  x  ->  ( A. s  e.  L  ( o  i^i  ( F " s ) )  =/=  (/)  ->  ( o  i^i  x )  =/=  (/) ) )
4032, 39syl 16 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  o  e.  J
)  /\  x  e.  ( ( X  FilMap  F ) `  L ) )  ->  ( A. s  e.  L  (
o  i^i  ( F " s ) )  =/=  (/)  ->  ( o  i^i  x )  =/=  (/) ) )
4140ralrimdva 2798 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  ( A. s  e.  L  ( o  i^i  ( F " s ) )  =/=  (/)  ->  A. x  e.  ( ( X  FilMap  F ) `  L ) ( o  i^i  x
)  =/=  (/) ) )
4228, 41impbid 185 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  ( A. x  e.  (
( X  FilMap  F ) `
 L ) ( o  i^i  x )  =/=  (/)  <->  A. s  e.  L  ( o  i^i  ( F " s ) )  =/=  (/) ) )
4342imbi2d 309 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  o  e.  J )  ->  (
( A  e.  o  ->  A. x  e.  ( ( X  FilMap  F ) `
 L ) ( o  i^i  x )  =/=  (/) )  <->  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) ) )
4443ralbidva 2723 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A. o  e.  J  ( A  e.  o  ->  A. x  e.  ( ( X  FilMap  F ) `
 L ) ( o  i^i  x )  =/=  (/) )  <->  A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) ) )
4544anbi2d 686 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. x  e.  ( ( X  FilMap  F ) `
 L ) ( o  i^i  x )  =/=  (/) ) )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) ) ) )
462, 10, 453bitrd 272 1  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fClusf  L ) `  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   E.wrex 2708    i^i cin 3321    C_ wss 3322   (/)c0 3630   "cima 4883   -->wf 5452   ` cfv 5456  (class class class)co 6083   fBascfbas 16691   filGencfg 16692  TopOnctopon 16961   Filcfil 17879    FilMap cfm 17967    fClus cfcls 17970    fClusf cfcf 17971
This theorem is referenced by:  fcfnei  18069
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-map 7022  df-fbas 16701  df-fg 16702  df-top 16965  df-topon 16968  df-cld 17085  df-ntr 17086  df-cls 17087  df-fil 17880  df-fm 17972  df-fcls 17975  df-fcf 17976
  Copyright terms: Public domain W3C validator