Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isffth2 Structured version   Unicode version

Theorem isffth2 14113
 Description: A fully faithful functor is a functor which is bijective on hom-sets. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
isfth.b
isfth.h
isfth.j
Assertion
Ref Expression
isffth2 Full Faith
Distinct variable groups:   ,,   ,,   ,,   ,,   ,,   ,,   ,,

Proof of Theorem isffth2
StepHypRef Expression
1 isfth.b . . . 4
2 isfth.j . . . 4
3 isfth.h . . . 4
41, 2, 3isfull2 14108 . . 3 Full
51, 3, 2isfth2 14112 . . 3 Faith
64, 5anbi12i 679 . 2 Full Faith
7 brin 4259 . 2 Full Faith Full Faith
8 df-f1o 5461 . . . . . . 7
9 ancom 438 . . . . . . 7
108, 9bitri 241 . . . . . 6
11102ralbii 2731 . . . . 5
12 r19.26-2 2839 . . . . 5
1311, 12bitri 241 . . . 4
1413anbi2i 676 . . 3
15 anandi 802 . . 3
1614, 15bitri 241 . 2
176, 7, 163bitr4i 269 1 Full Faith
 Colors of variables: wff set class Syntax hints:   wb 177   wa 359   wceq 1652  wral 2705   cin 3319   class class class wbr 4212  wf1 5451  wfo 5452  wf1o 5453  cfv 5454  (class class class)co 6081  cbs 13469   chom 13540   cfunc 14051   Full cful 14099   Faith cfth 14100 This theorem is referenced by:  idffth  14130  ressffth  14135  catciso  14262  yonffthlem  14379 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-map 7020  df-ixp 7064  df-func 14055  df-full 14101  df-fth 14102
 Copyright terms: Public domain W3C validator