MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin2 Unicode version

Theorem isfin2 7920
Description: Definition of a II-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin2  |-  ( A  e.  V  ->  ( A  e. FinII 
<-> 
A. y  e.  ~P  ~P A ( ( y  =/=  (/)  /\ [ C.]  Or  y
)  ->  U. y  e.  y ) ) )
Distinct variable group:    y, A
Allowed substitution hint:    V( y)

Proof of Theorem isfin2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pweq 3628 . . . 4  |-  ( x  =  A  ->  ~P x  =  ~P A
)
21pweqd 3630 . . 3  |-  ( x  =  A  ->  ~P ~P x  =  ~P ~P A )
32raleqdv 2742 . 2  |-  ( x  =  A  ->  ( A. y  e.  ~P  ~P x ( ( y  =/=  (/)  /\ [ C.]  Or  y
)  ->  U. y  e.  y )  <->  A. y  e.  ~P  ~P A ( ( y  =/=  (/)  /\ [ C.]  Or  y )  ->  U. y  e.  y ) ) )
4 df-fin2 7912 . 2  |- FinII  =  {
x  |  A. y  e.  ~P  ~P x ( ( y  =/=  (/)  /\ [ C.]  Or  y )  ->  U. y  e.  y ) }
53, 4elab2g 2916 1  |-  ( A  e.  V  ->  ( A  e. FinII 
<-> 
A. y  e.  ~P  ~P A ( ( y  =/=  (/)  /\ [ C.]  Or  y
)  ->  U. y  e.  y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   (/)c0 3455   ~Pcpw 3625   U.cuni 3827    Or wor 4313   [ C.] crpss 6276  FinIIcfin2 7905
This theorem is referenced by:  fin2i  7921  isfin2-2  7945  ssfin2  7946  enfin2i  7947  fin12  8039  fin1a2s  8040
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-v 2790  df-in 3159  df-ss 3166  df-pw 3627  df-fin2 7912
  Copyright terms: Public domain W3C validator