MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin4 Unicode version

Theorem isfin4 7923
Description: Definition of a IV-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin4  |-  ( A  e.  V  ->  ( A  e. FinIV 
<->  -.  E. y ( y  C.  A  /\  y  ~~  A ) ) )
Distinct variable group:    y, A
Allowed substitution hint:    V( y)

Proof of Theorem isfin4
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 psseq2 3264 . . . . 5  |-  ( x  =  A  ->  (
y  C.  x  <->  y  C.  A ) )
2 breq2 4027 . . . . 5  |-  ( x  =  A  ->  (
y  ~~  x  <->  y  ~~  A ) )
31, 2anbi12d 691 . . . 4  |-  ( x  =  A  ->  (
( y  C.  x  /\  y  ~~  x )  <-> 
( y  C.  A  /\  y  ~~  A ) ) )
43exbidv 1612 . . 3  |-  ( x  =  A  ->  ( E. y ( y  C.  x  /\  y  ~~  x
)  <->  E. y ( y 
C.  A  /\  y  ~~  A ) ) )
54notbid 285 . 2  |-  ( x  =  A  ->  ( -.  E. y ( y 
C.  x  /\  y  ~~  x )  <->  -.  E. y
( y  C.  A  /\  y  ~~  A ) ) )
6 df-fin4 7913 . 2  |- FinIV  =  {
x  |  -.  E. y ( y  C.  x  /\  y  ~~  x
) }
75, 6elab2g 2916 1  |-  ( A  e.  V  ->  ( A  e. FinIV 
<->  -.  E. y ( y  C.  A  /\  y  ~~  A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684    C. wpss 3153   class class class wbr 4023    ~~ cen 6860  FinIVcfin4 7906
This theorem is referenced by:  fin4i  7924  fin4en1  7935  ssfin4  7936  infpssALT  7939  isfin4-2  7940
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-fin4 7913
  Copyright terms: Public domain W3C validator