MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin7 Unicode version

Theorem isfin7 7943
Description: Definition of a VII-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin7  |-  ( A  e.  V  ->  ( A  e. FinVII 
<->  -.  E. y  e.  ( On  \  om ) A  ~~  y ) )
Distinct variable group:    y, A
Allowed substitution hint:    V( y)

Proof of Theorem isfin7
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 breq1 4042 . . . 4  |-  ( x  =  A  ->  (
x  ~~  y  <->  A  ~~  y ) )
21rexbidv 2577 . . 3  |-  ( x  =  A  ->  ( E. y  e.  ( On  \  om ) x 
~~  y  <->  E. y  e.  ( On  \  om ) A  ~~  y ) )
32notbid 285 . 2  |-  ( x  =  A  ->  ( -.  E. y  e.  ( On  \  om )
x  ~~  y  <->  -.  E. y  e.  ( On  \  om ) A  ~~  y ) )
4 df-fin7 7933 . 2  |- FinVII  =  { x  |  -.  E. y  e.  ( On  \  om ) x  ~~  y }
53, 4elab2g 2929 1  |-  ( A  e.  V  ->  ( A  e. FinVII 
<->  -.  E. y  e.  ( On  \  om ) A  ~~  y ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    = wceq 1632    e. wcel 1696   E.wrex 2557    \ cdif 3162   class class class wbr 4039   Oncon0 4408   omcom 4672    ~~ cen 6876  FinVIIcfin7 7926
This theorem is referenced by:  fin17  8036  fin67  8037  isfin7-2  8038
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-fin7 7933
  Copyright terms: Public domain W3C validator